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1. EXECUTIVE SUMMARY

This deliverable aims to provide the methodological foundation for developing the models of
the industrial partners’ supply chains in order to assess the future circular scenarios
envisioned in the project, so scientifically rigorous models and analysis can be developed in
order to obtain sound generalisable outcomes.

First, we provide in Section 2 precise definitions for the different terms employed in the
deliverable (i.e. models, modelling methodologies/approaches, and modelling tools). Then in
Section 3, we elaborate the modelling features required to represent in detail the future circular
supply chain scenarios described in WP1 (i.e. operational features and circularity features).
Different ranges of values for each of these features are assigned for the different future
circular supply chain scenarios (Section 3.2), according to the results of a survey conducted
among the participants in the project. With all these elements, it is possible to characterise in
detail the envisioned scenarios. Furthermore, a number of performance indicators are derived
in Section 3.3. (even if these are provisional ones depending on the finalisation of the
deliverable D2.2 later in the working plan of the project) in order to assess these scenarios
according to the economic, environmental, and social dimensions. In Section 3.4., based on
the features identified for the different scenarios, a number of modelling requirements (i.e. the
characteristics that the models should possess in order to properly describe these scenarios)
are developed. These modelling requirements would serve to select among the most suitable
modelling methodologies commonly used in supply chain dynamics (described in Section 4.1)
and circular economy (described in Section 4.2). As it turns out from the analysis carried out
in Section 5, no single modelling methodology can match all modelling requirements, therefore
a mix of modelling methodologies are selected. More specifically, analytical modelling is
selected for developing models at the design/allocation level, while simulation is selected for
developing models at the operational level. Finally, the main simulation tools available are
discussed and ranked according to a number of criteria, and the AnyLogic tool is selected as
the most suitable one.

This document concludes by presenting in Section 6 the modelling framework (i.e. the abstract
model of the generic nodes in a circular supply chain), which would constitute the basic entity
for the AnyLogic and analytical models to be developed from the industrial partners’ supply
chains in the deliverable D3.2.
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2. INTRODUCTION: QUANTITATIVE MODELS

Quantitative models use a collection of variables that change within a specified range,
explicitly defining the quantitative and causal relationships between them. This explicit
definition allows the magnitude of these relationships to be meaningful and directly connected
to actual variable values in real-world scenarios (Hillier and Lieberman 2021).

Since their inception, quantitative models have formed the backbone of most operations
research. In Europe, this field became known as Operational Research, while in the USA, it
was termed Operations Research and served as a foundation for early management
consulting (Pidd 2009). Initially, quantitative modelling was heavily focused on addressing
practical, real-world issues in operations management rather than on advancing scientific
understanding (Ackoff 1956). However, by the 1960s, particularly in the USA, the field saw the
emergence of a robust academic research trajectory. Researchers began tackling more
abstract problems, using these investigations to develop scientific knowledge within
operations management (Bertrand et al., 2024). During this period, much of the research
drifted away from its empirical roots, with methodologies evolving primarily for these
theoretical inquiries. As a result, empirically oriented research methodologies were neglected
for over three decades. It was not until the 1990s that empirical research began to experience
a resurgence in Operations Management. Initially, this revival had a predominantly qualitative
focus (Meredith, 2001). With the advent of digital data and the incorporation of laboratory
experiments into research methodologies in the 2000s, the empirical nature of quantitative,
model-based research in Operations Management was significantly enhanced (Ketokivi and
Choi, 2014). The research scope also expanded from focusing on single companies to
encompassing entire supply chains. Consequently, the paradigms of model-based research
in Operations Management have been extended to the broader field of Supply Chain
Management. (Simchi-Levi, D et al. 2007).

In the subsequent subsection, we delve into an exploration of key concepts for understanding
the dynamics of modelling in various domains. Specifically, we define which is a "model,"
elucidating its meaning as a simplified representation of a complex system or phenomenon.
Also, we discuss the concept of "mathematical modelling”, a powerful approach that
harnesses mathematical language to describe and analyse complex systems, and how it
enables us to quantify relationships between variables and simulate the behaviour of dynamic
systems. Also, we present the concept of “computer simulation”, a cutting-edge technique that
leverages computational power to simulate real-world phenomena. Finally, we turn our
attention to the critical role of "modelling assumptions" in shaping the modelling process,
exploring how they define the scope and boundaries of a model.

2.1 MODELS: DEFINITONS AND FEATURES

A model is a simplified representation of reality that is designed to explain, predict, or manage
the behaviour of real-world systems or phenomena. Models serve as tools to understand
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complex systems by highlighting their essential features while omitting non-essential details
(Bertrand et al., 2024). In particular, they can be categorized as follows:

1. Physical models: are tangible, scaled-down versions of objects or systems. For
example, an architectural model of a building helps visualize its design and structure
before actual construction (Chauhan, 2023).

2. Conceptual models: are abstract representations that use concepts and ideas to
convey understanding. They include diagrams, flowcharts, and organizational charts
that illustrate relationships and processes within a system (Thalheim 2019).

3. Mathematical models: use mathematical language and equations to describe the
behaviour and characteristics of a system. They are particularly powerful in fields like
physics, economics, biology, and engineering, where they help simulate real-world
phenomena and predict future outcomes (Azizi et al. 2021).

Among these three approaches, mathematical models are particularly appropriate in
Operations Management and Supply Chain Management because they use equations to
accurately describe, simulate, and predict complex system behaviours, facilitating better
decision-making and optimization by focusing on essential features and omitting non-essential
details (Bertrand et al., 2024). Specifically, a mathematical model is an abstract description
of a concrete system using mathematical concepts and language. The process of developing
a mathematical model is termed mathematical modelling. Mathematical models are used in
applied mathematics and in the natural sciences, such as physics, biology, earth science, and
chemistry, as well as in engineering disciplines like computer science, industrial and
management engineering. Beyond these, mathematical models also find application in non-
physical systems, such as the social sciences, including economics, psychology, sociology,
and political science. Mathematical modelling describes a process and an object by use of the
mathematical language (Giordano 2013). A process or an object is presented in a “pure form”
in Mathematical Modelling when external perturbations disturbing the study are absent.

Computer simulation is a natural continuation of the mathematical modelling. Computer
simulation can be considered as a computer experiment which corresponds to an experiment
in the real world (Law and Kelton, 2019). Such a treatment is rather related to numerical
simulations. Symbolic simulations yield more than just an experiment. They can be considered
as a transformation of a mathematical model by computer, since symbolic simulations keep
parameters of the model in symbolic form that corresponds to a set of actual experiments
(Buchberger 1988). One can obtain numerical results as in actual experiments only after
substitutions of the symbolic parameters with the numerical data (Mityushev et al., 2018). In
summary, simulation model is a mathematical representation of a real-world system or
process that allows for the study of its behaviour over time. Unlike mathematical models, which
often rely on analytical solutions to equations, simulation models are typically implemented
using computer software to mimic the dynamic behaviour of the system through numerical
simulations.

A modelling assumption is a simplification or generalization made during the construction of
a model to make it more manageable and solvable (Sterman 2000). These assumptions define

8
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the scope and boundaries of the model, specify the behaviour of variables, and outline the
relationships between different components of the system being studied (Law and Kelton,
2019). Modelling assumptions are essential because they simplify complex systems: By
reducing complexity, assumptions make it feasible to develop, analyse, and understand the
model (Sergent, 2013). Also, they help in concentrating on the most significant factors
affecting the system, ignoring less critical details (Pidd 2004). Furthermore, they enhance
manageability by simplifying the computational feasibility, especially for complex models with
numerous variables (Banks, 2005). Essentially, modelling assumptions are crucial elements
that shape the construction and application of models (Borshchev, 2013). They enable
simplification and focus but must be carefully chosen and regularly reviewed to ensure that
they do not compromise the model's validity and reliability. However, every assumption
introduces a limitation (Kleijnen, 1995). Understanding these limitations is crucial for correctly
interpreting model results and for identifying the scenarios in which the model can be applied.
Thus, by understanding and carefully considering modelling assumptions, model developers
and users can create more accurate, reliable, and useful models. This process ensures that
the models are both scientifically sound and practically applicable in real-world decision-
making (Robinson, 2014).

2.2 METHODOLOGIES APPROACHES FOR MODELLING

The methodological approach involving mathematical models and simulation in Operations
Management is a sophisticated and vital aspect of modern industrial processes. Mathematical
models are abstract representations of real-world systems using mathematical language and
symbols to describe the relationships between variables. Simulations, on the other hand, are
the techniques of imitating the operation of real-world processes or systems over time, often
executed through computational algorithms. Together, these methods enable managers to
analyse, predict, and optimize operational performance in a controlled and systematic manner.
In the realm of operations management, mathematical modelling and simulation have become
indispensable tools for tackling the complexities of modern manufacturing, supply chain, and
service operations. These techniques allow organizations to capture the intricate dynamics
and interdependencies within their operational processes, enabling them to make informed
decisions and implement strategies that enhance efficiency, productivity, and profitability.

Mathematical models in operations management can take various forms, such as linear
programming, queuing theory, inventory models, and network optimization models. These
models provide a quantitative framework for representing operational constraints, resource
allocation, scheduling, and logistics challenges (Hillier and Lieberman 2021). By incorporating
relevant variables, parameters, and objective functions, these models can be used to optimize
decision-making processes, minimize costs, and maximize operational performance.

Simulations, on the other hand, allow managers to experiment with different scenarios and
evaluate the impact of various operational strategies without disrupting actual operations.
Discrete event simulation (DES) and agent-based modelling (ABM) are two prominent
simulation techniques widely used in operations management (Borshchev and Filippov, 2004,
Banks et al., 2010). DES models the flow of entities (e.g., products, customers) through a

9
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system, capturing the dynamics of queues, resource utilization, and process interactions. ABM
simulates the behaviour and interactions of individual agents (e.g., machines, workers) within
a system, enabling the study of emergent phenomena and complex adaptive systems.

Recent advancements in computational power, data analytics, and machine learning have
further enhanced the capabilities of mathematical modelling and simulation in operations
management. Data-driven modelling approaches, such as machine learning-based demand
forecasting and predictive maintenance, have gained traction, enabling more accurate and
adaptive decision-making processes (Agrawal & Srikant, 2000; Susto et al., 2015).

Moreover, the integration of mathematical models and simulations with real-time data streams
and Internet of Things (IoT) technologies has opened up new avenues for dynamic
optimization and real-time decision support systems. Digital twins, virtual representations of
physical assets or processes, leverage mathematical models and simulations to monitor,
analyse, and optimize operational performance in real-time (Tao et al., 2019).

Furthermore, the field of simulation optimization has emerged as a powerful approach,
combining mathematical optimization techniques with simulation models to identify optimal
solutions for complex operational problems (Fu, 2015). Techniques such as metaheuristics,
evolutionary algorithms, and response surface methodologies have been employed to
efficiently search for optimal solutions within the vast solution spaces generated by simulations.

One of the core challenges in applying these methodologies is the inherent complexity of
operational systems. As highlighted by Hillier and Lieberman (2021), operational processes
often involve numerous interconnected components and variables, making it difficult to
develop models that are both accurate and computationally feasible. The complexity can lead
to models that are either oversimplified, thus losing critical details, or overly detailed, making
them computationally intractable. This necessitates a balance between model fidelity and
computational efficiency to ensure practical applicability.

Data guality is another crucial factor influencing the effectiveness of mathematical models and
simulations. Operations management relies heavily on precise data to feed into these models.
Inaccurate or incomplete data can significantly skew model outputs, leading to erroneous
conclusions. According to Davenport and Harris (2017), ensuring high-quality data involves
rigorous data collection, pre-processing, and validation steps. Data cleaning and
transformation processes are essential to maintain the integrity and reliability of the inputs
used in simulations.

Computational efficiency is a critical concern in the deployment of mathematical models and
simulations. High-fidelity models, while providing detailed and accurate insights, often demand
substantial computational resources. This can be a limiting factor, especially for real-time
decision-making scenarios. The work by Law and Kelton (2019) emphasizes the importance
of developing efficient algorithms and optimization techniques to reduce computational loads,
making it feasible to run complex simulations within reasonable timeframes.

10
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The validation and verification of models are fundamental to ensuring their reliability and
accuracy. Without rigorous validation, there is a risk that models may not accurately reflect
real-world conditions, leading to suboptimal decisions. Robinson (2014) points out that
validation involves comparing model outputs with actual system behaviour to ensure
consistency and accuracy. Verification, on the other hand, ensures that the model is correctly
implemented according to its specifications. Together, these processes build confidence in
the model's predictive capabilities.

Incorporating uncertainty and variability into models is another significant challenge. Real-
world operations are inherently uncertain and variable, influenced by numerous unpredictable
factors. Models that fail to account for this stochastic nature can produce misleading results.
Bertsimas and Freund (2020) discuss the importance of stochastic modelling techniques,
which incorporate randomness and uncertainty into the models, thereby providing a more
realistic representation of operational dynamics.

Furthermore, user-friendly interfaces are essential to ensure that these sophisticated tools can
be effectively utilized by practitioners who may not have advanced technical expertise. As
suggested by Powell and Baker (2017), the design of intuitive interfaces and comprehensive
training programs is crucial for enabling users to interact with models and simulations
effectively, thereby enhancing their utility and impact.

Interdisciplinary collaboration is also vital in the development and implementation of
mathematical models and simulations. Operations managers, data scientists, and other
stakeholders must work together to ensure that models are both theoretically sound and
practically applicable. Cross-disciplinary collaboration fosters a holistic approach, integrating
diverse perspectives and expertise to enhance model robustness and applicability. This
collaborative approach is advocated by Silver, Pyke, and Thomas (2016), who emphasize the
importance of leveraging collective expertise for successful model implementation.

2.3 MODELLING TOOLS

In the context of mathematical modelling and simulation in operations management, a
modelling tool refers to a software application or programming environment designed to
facilitate the development, implementation, and analysis of mathematical models and
simulations. Modelling tools provide a user-friendly interface and a set of features that enable
operations managers, analysts, and researchers to create, modify, and execute mathematical
models and simulations without the need for extensive programming knowledge.

Modelling tools play a crucial role in addressing these challenges and ensuring that the
chosen methodologies are appropriate for the goals of the study. They are software
applications designed to facilitate the creation, visualization, and management of various types
of models used in software development, systems engineering, and other domains. These
tools provide a structured and visual approach to representing complex systems, processes,
data structures, and architectures. The concept of modelling tools revolves around the idea of
abstracting and simplifying complex real-world systems or concepts into visual

11
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representations or models. These models serve as a communication medium, enabling
stakeholders to understand, analyse, and collaborate on the design and development of
systems or processes. Modelling tools offer a range of functionalities, including model building,
data integration, simulation execution, visualization and animation, optimization and analysis,
and experimentation and scenario analysis (Rossetti, 2015; Bapat & Sturrock, 2003).

Some popular modelling tools used in operations management include:

1. Simulation software: Arena (Kelton et al., 2017), AnyLogic (Borshchev, 2013), FlexSim
(Nordgren, 2003), Vensim (Ventana Systems, 2018) and Simio (Sturrock & Pegden, 2010)
are examples of dedicated simulation software packages that support various simulation
paradigms, such as discrete event simulation, agent-based modelling, and system
dynamics.

2. Optimization solvers: CPLEX (IBM, 2009), Gurobi (Gurobi Optimization, 2022), and LINGO
(Schrage, 2006) are optimization solvers that can handle linear programming, mixed-
integer programming, and other optimization problems commonly encountered in
operations management.

3. Spreadsheet-based tools: Excel and its add-ins like Solver (Fylstra et al., 1998), Risk
Solver (Frontline Solvers, 2022), and @Risk (Palisade Corporation, 2022) provide a
familiar environment for building and analysing mathematical models and simulations,
particularly for smaller-scale problems.

4. Programming languages and environments: Python (with libraries like PyOMO (Hart et al.,
2017), SimPy (Muller & Vignaux, 2003), and AnyLogistix (Borshchev, 2013)), MATLAB
(Higham & Higham, 2016), and R (Venables & Smith, 2022) offer powerful programming
environments for developing custom mathematical models and simulations, as well as
integrating with other data analysis and visualization tools.

Recent advancements in modelling tools have focused on integrating machine learning and
artificial intelligence techniques for data-driven modelling and simulation. For instance,
AnyLogic Cloud (Borshchev, 2021) incorporates machine learning capabilities for demand
forecasting and predictive maintenance, while SimMine (SimMine, 2022) leverages deep
learning for simulation model discovery and optimization.

Furthermore, the emergence of cloud-based modelling and simulation platforms, such as
AnyLogic Cloud and Simio Cloud (Sturrock, 2021), has enabled collaborative model
development, scalable simulation execution, and remote access to modelling resources.

In the field of simulation, tools such as ARENA, Simul8, Vensim, and AnyLogic offer
comprehensive platforms for developing and running simulations, each with unique strengths
suited to different aspects of operations management. ARENA, for instance, is well-suited for
discrete-event simulation (DES), which is essential for modelling operations involving distinct
events occurring at specific times. This capability makes ARENA particularly effective for

12
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analysing manufacturing processes, production lines, and service systems where timing and
sequencing of events are critical (Kelton et al., 2017).

Simul8 also excels in discrete-event simulation and is known for its user-friendly interface and
rapid model development capabilities. It is often used for scenarios requiring quick prototyping
and iterative testing of operational strategies. As reported by Hall (2012), Simul8's visual
approach to building models facilitates easier communication of complex processes and
results to stakeholders who may not be familiar with simulation modelling.

Vensim, on the other hand, specializes in system dynamics modelling, making it suitable for
understanding and analysing the behaviour of complex systems over time. This tool is
particularly useful for strategic planning and policy analysis, where the focus is on
understanding the long-term impact of decisions and identifying leverage points within a
system (Ventana Systems, 2018). Vensim's strength lies in its ability to model feedback loops,
time delays, and non-linear relationships, which are common in complex organizational
systems.

AnyLogic offers a unigue advantage by integrating multiple simulation methodologies,
including discrete-event, agent-based, and system dynamics modelling. This multi-method
capability allows for a more comprehensive representation of complex systems with various
interacting components (Borshchev, 2013). For example, AnyLogic can model the flow of
materials through a production system (DES), the behaviour of individual agents such as
customers or employees (agent-based), and the broader systemic trends and feedback loops
(system dynamics). This flexibility makes AnyLogic particularly valuable for large-scale, multi-
faceted studies such as optimizing supply chain efficiency, evaluating healthcare systems, or
simulating urban development scenarios.

The appropriateness of these tools depends on the specific goals of the study. For instance,
if the objective is to optimize production schedules in a manufacturing environment, ARENA
or Simul8 would be highly appropriate due to their robust DES capabilities. If the study aims
to improve supply chain efficiency, AnyLogic's multi-method approach can capture the
complex interactions between different supply chain components, providing a more holistic
analysis. For strategic planning and long-term policy analysis, Vensim's system dynamics
modelling can reveal insights into the broader systemic impacts of various decisions.

Choosing the right tool is crucial as it ensures that the models can accurately represent the
operational processes and deliver actionable insights. This choice significantly impacts the
fidelity of the simulation, the relevance of the insights generated, and the overall effectiveness
of the study. According to Banks et al. (2010), the choice of simulation software should align
with the specific requirements of the study, including the nature of the system being modelled,
the level of detail needed, and the expertise of the users. For instance, discrete-event
simulation tools like ARENA and Simul8 are ideal for systems where the flow of events and
processes can be distinctly identified and timed, such as in manufacturing or service
operations (Kelton et al., 2017; Hall, 2012). These tools enable precise modelling of
sequences and timings, which are critical for optimizing workflows and reducing bottlenecks.
Thus, the choice of a modelling tool depends on factors such as the complexity of the problem,

13

D3.1 Methodological report



the required level of customization, the available data sources, and the expertise of the users.
Effective use of these tools can significantly enhance the decision-making capabilities of
operations managers by providing insights into complex operational processes and enabling
data-driven optimization strategies.

Furthermore, the level of detail required in the model also dictates the choice of tool. Detailed
models that capture fine-grained interactions and specific events benefit from discrete-event
simulation tools, while broader system-level analyses that explore overall trends and patterns
are better served by system dynamics models. The expertise of the users is another critical
factor; user-friendly interfaces and intuitive design are essential for practitioners who may not
have advanced technical skills. Tools like Simul8, known for their ease of use and visual
modelling capabilities, can facilitate quicker adoption and more effective use by non-experts
(Hall, 2012).

In conclusion, the careful selection of modelling and simulation tools is paramount to the
success of any operations management study. Aligning the tool with the study's requirements
ensures that the models developed are both accurate and actionable, thereby providing
reliable insights that drive better decision-making and operational improvements. This
alignment not only enhances the credibility of the study's outcomes but also maximizes the
practical benefits derived from simulation, leading to more informed strategies and optimized
operations.

3 MODELLING DOMAIN AND REQUIREMENTS

3.1 MODELLING FEATURES

In this section the set of modelling factors and assumptions that are necessary to create a
Circular Supply Chain model is provided.

Specifically, they will be divided into two different groups. The first group describes the
Operational features, that characterize the linear production and processes. In other word,
group 1 could exist in any type of SC, also in forward SCs, while group 2 defines the Circularity
features. Thus, those features that characterize the Circular Supply Chain (CSC) archetype,
the circular flows and R-imperatives.

As discussed in the previous sections, modelling is a tool that enables understanding and
decision-making of complex systems and processes, such as CSC, providing a flexible and
scalable approach. Thus, in addition, for each operational/circular feature, the modelling factor
that enable to create a model for a CSC is exposed, as summarized in Table 1.

3.1.1 Group 1: Operational features

Supply Chain structure. It refers to the configuration of interconnected entities involved in a
SC in a supplier-buyer relationship, from the extraction of raw material to the final customer.
14
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It can be Complex or Simple depending on if it includes several actors or few actors. It can
also be Global or Local, according to the geographical distribution of SC’'s members. In terms
of modelling actors:

o Number of Nodes. The number of echelons that compose a SC need to be considered
since it is the base of modelling CSCs. Moreover, since in CSC there are also
interconnection between different SC, also the number of SC need to be considered. Thus,
the number of nodes informs on the total number of actors that characterize the CSC
model.

e Transportation lead time. It depends on the distance between the different nodes. If it is
Global SC transportation led time will be higher compared if the SC is Local. In the latter
case, since short distances need to be covered, thus, the model will present a short
transportation lead time.

Market demand. It refers to the trend of market demand governed by the consumers. The
demand of the main product that the CSC is subject to. Depending on the product, it can be
seasonal or steady or influenced by the presence of secondary markets or leasing. Thus, if
the market demand follows a normal distribution, in terms of modelling factors:

e Mean demand. It governs the demand volume, it can be high or low and it can vary over
time when for instance mechanisms such as the “refuse, reduce, and rethink” are diffused.
Indeed, for instance in this case the demand volume decrease.

¢ Demand variance. It informs on the variability of the market demand

Collaboration: It refers to the cooperation among the different actors within the SC including
information and data sharing, also concerning circularity; in other works, if a collaborative
approach and data sharing is enabled between different SC actors.

¢ Information sharing. There is information transparency concerning incoming demand
values or lead times, but also circular factors, for example the number of EOL returns or
the amount of waste exchanged in industrial symbiosis settings.

Efficiency of forward process: It refers to the efficiency of the linear (no circular) production
processes. Since managers could decide to invest more in implementing new circular
processes or, on the opposite site, to improve their existing one, this entails high efficiency for
the forward production. But at the same time, if regulatory laws force circular and sustainable
production, linear processes are constrained. In terms of modelling factors:

o Variability of lead time. It may be that innovative technologies are implemented in the linear
production to ensure and optimized production in a timely manner. It reflects in a low
variability in the production lead times. On the contrary, if circular production is prioritized,
and the technologies/machines used in the linear production are less effective than those
used in circular ones, the variability of lead time could be lower.

o Maximum forward production rate. If the production process is governed by regulation for
raw material extraction/use (weighted to recycled material use) a limit on the linear
production needs to be set.

15
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Environmental constraints: CSCs can be subject to regulations that limits their production
rates but also their environmental impacts.

e Constraints on emissions. A maximum of emissions is imposed in the production process
of a SC.

e Constraints on waste/by-products generations. When waste/by-product in not upcycled,
thus, there are no circular practices that generate value from them, still regulations could
force the SC to limit their production.

3.1.2 Group 2: Circularity features

Degree of circularity. It refers to the percentage of end-of-life products that are reinsert in
the SC after their lifecycle with consumers.

e Return rate. It refers to the percentage of market sales that are reinserted in the CSC.
Indeed, after their use, only a rate of used goods is return by the customer.

o Coefficient of variation of the return rate. It refers to the variability over time of the
percentage of end-of-life products that are circulated.

End-of-life dynamics. It refers to the dynamics of reverse circular loops of used products.
Specifically, since the used products can be reinserted in the original SC or in another SC,
from a modelling perspective we distinguish:

o Closed-loops. When closed-loops are implemented, the end-of-life products are returned
in the origin SC. Here, they are remanufactured/reused/repaired to serve their original
purpose, thus, to satisfy the same marked demand.

o Open-loops. When open-loops are implemented, instead end-of-life products are sent to
a different SC than their main one. Indeed, here, once treated, they will satisfy another
final customer demand and serve a new purpose.

End-of-life cycles. It refers to the nature of the reverse process and the SC level where end-
of-life  products are reinserted. |Indeed, depending on the R-imperative
(reuse/remanufacture/recycle) different SC members can be involved in the loops.

e Returns share. Short loops when end-of-life products are subject to short loops/cycles and
reverse processes such as Resell, Reuse, Repair. On the contrary, long loops when end-
of-life products are subject to long loops/cycles and reverse processes such as Recycle,
Remanufacture, Repurpose.

Industrial symbiosis. In industrial symbiosis the waste or by-products generated in the
production process (they are not end-of-life waste) by one industry are utilized as inputs or
resources by another industry instead of raw virgin material. From a modelling perspective:

e Waste rates. Between two nodes of the same or two different SCs, there can be a
symbiotic exchange of waste/by-product, that is accounted by the waste rate. Here, the

exchange can be bi-directional and it can involve any type of waste/by-product that is
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created in the production process of a SC member that is useless for itself, but it represents
a source of value for another production process.

Lifecycle of the product. It reflects the products life duration. Depending on the circular
scenario, on the different strategies that are implemented in the CSC and on the product itself,
the product life duration can consist of some days, e.g. agri-food sector, or several years, e.g.
electronics or automotive sectors. This is an important issue when it comes to model and
simulation for CSC.:

¢ Consumption lead time. It refers to the time lag between the sale of the products and their
end-of-life/collection, thus, is the time products are held by the customers.

Quality of end-of-life products. It refers to the quality of the end-of-life returned products
before being treated in a reverse process._Products returned at the end of their life cycle need
to be in a condition that allows for effective repair or recycling.

e Mean of reverse lead time. It expresses the quality of end-of-life products in a circular
supply chain because it provides insight into the average time it takes for products to be
returned, processed, and reintegrated into the supply chain after their initial use. For
instance, shorter mean reverse lead time suggests that products are returned in relatively
good condition, minimizing the need for extensive repairs or refurbishment.

Quality of the treated products. It refers to the quality of the end-of-life returned products
after being treated in a reverse process.

o Demand from secondary market. Recovered products with the same quality of new ones,
thus as-good-as-new, can be used to satisfy the original market demand. Thus, products
generated using raw virgin material or generated using reprocessed material are identical.
On the contrary, there can be recovered products with lower quality are sell at a lower
price and in secondary markets. Thus, they are subject to another final customer demand.

Efficiency of reverse process. It refers to the efficiency of the technology used in the reverse
process. As well as for the efficiency of forward process (above) it can be high or low
depending on the technologies used.

o Coefficient of variation of the reverse lead time. This parameter indicates how efficiently a
SC node reverse process is operating. An efficient reverse process has consistent and
predictable lead times, meaning less variability in the time it takes to return and process
used products. Thus, a low coefficient of variation indicates that the reverse lead times are
consistent and there is little variability thank to reliable performance when there are fewer
disruptions.

Replenishment policies. It refers to the replenishment policy that governs the reverse flows
in CSCs. Since the volume of waste that is created in a productions process, or the end-of-life
waste are dependent on the customer demand, they are subject to the demand sores of
variability plus the variability of the circular process plus the life cycle of the product variability,
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Thus, to properly manage them in their operations, SC members need a push or pull policy to

govern the volume of the circular flows.

e Cycles policy. The two main policy that can govern the loops are the push and pull policies.
In a push policy, end-of-life waste and/or by-products are always prioritized compared to
the and once they are collected, they became available for their buyer. In a pull policy,
end-of-life waste and/or by-products are managed through ordering policies as for the
linear production and their buyer can chose to replenish in a linear o circular manner.

Feature Modelling factor

Notation

Supply Chain structure Number of Nodes/echelons N
Transportation lead time Lti

Market demand Mean demand [T15)
Demand variance 0%

Collaboration Information sharing £

Efficiency of forward process Variability of lead time cv L
Maximum forward production rates Shax

Environmental constraints Constraints on emissions. Smax
Constraints waste/by-product generation

Degree of circularity rate Mean return ai
Coefficient of variation of the return rate cva

End-of-life dynamics Closed-loop or Open-loop

End-of-life cycles R-imperative

Industrial symbiosis Waste rates wi

Lifecycle of the product Consumption lead time Lc

Quality of end-of-life products Mean of reverse lead time HLRi

Quality of the treated products Demand from secondary market

Efficiency of reverse process Coefficient of variation of the reverse lead time CV Lri

Replenishment policies Cycles policy

Table 1. Modelling for Circular Supply Chains
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To conclude, the set of modelling factors above described are those that enable to create a
model for a CSC. Indeed, combining their values it is possible to create a specific SC
archetype, as well as explore possible to-be scenarios when tuned.

3.2 FUTURE SCENARIOS

Here, the four plausible future circular scenarios (to be modelled) that have been defined in
D1.3 are characterized also by the above-mentioned modelling features. Thus, for each
plausible future circular scenario, the operational features and the circular features are defined.

Specifically, the results have been obtained through an external validation that consisted of
the following steps.

1. Modelling assumptions definition. Here, the modelling feature values has been
assigned based on the scenario description in D1.3.

2. Internal workshop with the ExPIiCit project consortium. During this workshop that took
please on the 19" of February, the modelling factors have been detailed explained in
order to give to the participant all the information to properly fill a scenario-based form
that was given to them immediately after the workshop.

3. Diffusion of an excel file (see Figure 1) where for each future scenario the set of
modelling factors could be defined. The scenario-based file has been filled by the
participants of the workshop and also by some other members of the project.

4. Validation of the results. The results obtained has been used to validate the factors
assignment proposed.

Finally, based on selections by the consortium, the values for each modelling factor in each
scenario has been obtained as summarized in the following paragraph.

For the sake of simplicity, for each Scenario we present only the overview, please refer to the
deliverable “D1.3 Tailored Scenario Exploration System for Circular Economy Scenarios” for
further information. Moreover, based on the overview one illustrative table for each scenario
in presented to provide some examples of the modelling assumptions derivation.
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Figure 1. Excel form

Scenario 1: Centralized circularity uptake (Unrestricted growth + Centralised governance).
Characterized by concentrated economic activity in large private and public entities as well as
unrestricted growth under top-down governance

Description: “In this scenario, the state and large corporations are in a coalition to promote
circular innovations and technical fixes to linear production and consumption systems.
Through these fixes they aim to increase economic growth, while trying at the same time to
decouple economic growth from environmental impact, but only from specific elements (GHG
emissions mainly). In this scenario, most decisions are made at the large-scale level since the
economic activity is very concentrated in few actors: the state and large corporations. These
few actors control specific strategic resources (e.g. critical raw materials for green
technologies, Artificial Intelligence powered infrastructure to fuel global logistics flows) and
govern and plan products and material flows. This also sparks some geopolitical conflicts
among different countries that defend the interests of their national corporations. Because of
the influence of large corporations, governments do not put in place hard restrictions on fossil
fuels or polluting products, just some compensations for some externalities (carbon cap and
trade, Extended Producer Responsibility programs and right to repair regulations). Also,
governments, and not corporations, make the necessary large investments for the recycling
and energy recovery infrastructure. The type of CE promoted preserves the status quo within
the economic system and is mainly based on improving efficiency through massive recycling
and energy recovery plants and using recycled materials instead of primary ones.
Corporations use Al bots and personalised advertisements to push citizens to consume ever
growing quantities of environmentally friendly and circular commodities for newly created
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needs. Global supply chains deliver products very fast and are constantly optimised by very
advanced technological infrastructure, which deals also with recovering them at the end of
their short life to fuel “circular” but unsustainable supply chains. There is no control on planned
obsolescence, which is actually used as a tool to fuel economic growth. Despite GHG
emissions being partially decoupled from economic growth, this does not happen for most of
the other impacts and ecological boundaries. As a consequence, there are worsening effects
of the ecological crises, which put human existence at risk.”

Feature

Supply Chain structure

Market demand

Collaboration

Efficiency of forward process

Environmental constraints

Global
Complex

High volume
High variability
No

High
Constrained

Not on emissions

Not on waste/by-products

Degree of circularity rate

End-of-life dynamics
End-of-life cycles

Industrial symbiosis

Lifecycle of the product
Quality of end-of-life products
Quality of the treated products
Efficiency of reverse process

Replenishment policies

Low

Increase over time
External

Short

Yes

Short

Low

Low

Low

Pull

Table 2. Modelling features for Scenario 1
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promote circular innovations

improving material efficiency

energy recovery plants

massive recycling

newly created needs

no control on planned obsolescence

Global supply chains

their short life

very fast

constantly optimized

Modelling assumption

Scenario aspect

Several loops (open and
closed)

Hight technical coefficients

Waste energy rates

High return rates

Different market demand

No regulations

Global network

Short consumption lead
time

Short production lead times

Increasing efficiency rates

Table 3. Scenario aspect-modelling assumptions for Scenario 1.

Scenario 2: Planned Circular loops (Limits to growth + Centralized governance).
Characterized by concentrated economic activity in large private and public entities as well as

strict limits to growth under top-down governance;
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Description: “In this scenario, a collaboration between states, major corporations, and the UN
leads to the establishment of limits to growth society. The system is centred around throughput
rights, and aims to ensure human activities remain within safe ecological limits, and also that
no one is left behind. This transformation occurs gradually and employs an authoritarian
approach, placing ecological boundaries and equity at the forefront over private profits. Over
time, traditional markets give way to a more technocratic and scientifically guided economic
framework focused on socially desirable throughput (authoritarian environmentalism). The
Circular Economy is an integral part of this paradigm shift, prompting a radical rethinking of
production and consumption. Product-as-a-service models and the sharing economy
proliferate. Products reach their end of life within local spheres, under the control of
decentralised divisions of large corporations. This localised control contributes to resource
conservation at heightened levels. Large corporations retain ownership of products while
leasing them to consumers, resulting in earnings through user fees. Citizens do not own
smartphones, computers, cars, and appliances and develop a new form of dependence on
these large corporations that provide these essential items. Strategic materials, pivotal to
these products, evolve into a novel form of capital for these corporations and nations. As a
consequence of these evolving strategies, supply chains undergo a transformation, shifting
towards more localised structures due to the escalating costs associated with global supply
chains. A notable feature of this system is the imposition of high taxes. These taxes serve a
dual purpose: firstly, to finance a universal basic income, and secondly, to guide consumers
towards non-detrimental products and services. The outcome is a society that is less free,
more constrained but more equitable”

Feature

Supply Chain structure Global
Simple
Market demand High volume

Low variability
Collaboration Yes
Efficiency of forward process High
Constrained

Environmental constraints Yes, on emissions

Yes, on waste/by-products

Degree of circularity rate High

Constant over time
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End-of-life dynamics Internal

End-of-life cycles Long
Industrial symbiosis Yes

Lifecycle of the product Long
Quality of end-of-life products High
Quality of the treated products High
Efficiency of reverse process High
Replenishment policies Push

Table 4. Modelling features for Scenario 2.

Scenario aspect Modelling assumption

ecological boundaries over private  Emission restrictions
profits

guide consumers towards non- Large consumption lead
detrimental products and services times

product-as-a-service
Short loops

High return rate

sharing Collaboration

more localized SCs
Few nodes

Short Lead Times

Table 5. Scenario aspect-modelling assumptions for Scenario 2.

Scenario 3: Decentralized circularity uptake (Limits to growth + Decentralized governance).
Characterized by strict limits to growth in a highly dispersed economy, structured and
governed from the bottom up.-
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Description: “In this scenario, although environmental limits are recognised, there are no strict
constraints imposed on throughput or ecologically responsible restrictions on economic
activities. The state opts for mild regulations aimed at altering demand through measures like
subsidies and eco-taxes, and hopes companies develop cleaner and circular innovations and
technologies. Circular Economy is interpreted as a system that retains essential materials and
energy within their economic domain and is motivated by concerns regarding supply security
and social efficiency, which considers the costs of waste and the direct impacts of pollution on
various stakeholders. Societies are increasingly resisting the dominance of large corporations,
which have benefited an exaggerated share of economic benefits and profits within the
financial and economic sectors, also managing to circumvent taxes for an extended period by
utilizing offshore tax havens. Social movements claim back the ownership of personal data
tech companies have been using to accrue their power. After implementing targeted economic
measures aimed at re-establishing local competition and countering the dominance of large
corporations, economic activity becomes significantly more diffused throughout society and
decentralised within various organisations. This shift away from large corporations’ hegemony
not only restores more market freedom but also reinvigorates the overall economy's capacity
for innovation. Despite facing significant organisational transaction costs, small-scale actors
play a pivotal role in driving change. The processes of commaodification continue to explore
fresh avenues for economic growth. Circular business models become increasingly prevalent,
often facilitated by government incentives. However, smaller organisations often lack the
economies of scale enjoyed by larger counterparts, resulting in reduced efficiency.
Coordination challenges persist, especially for larger circular initiatives. In the long term, this
system struggles to prevent environmental degradation, which adversely affects overall
human well-being. Many negative externalities remain unaddressed, as inexpensive
transportation encourages long, global supply chains involving numerous actors.”

Feature

Supply Chain structure Local
Complex
Market demand Low volume

High variability
Collaboration No
Efficiency of forward process High Efficiency
Constrained

Environmental constraints Not on emissions

Not on waste/by-products
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Degree of circularity rate Low

Increase over time

End-of-life dynamics External
End-of-life cycles Short
Industrial symbiosis No
Lifecycle of the product Short
Quality of end-of-life products Low
Quality of the treated products Low
Efficiency of reverse process High
Replenishment policies Pull

Table 6. Modelling features for Scenario 3.

Scenario aspect Modelling assumption

subsidies and eco-taxes to alter Limited emissions (e.g.
demand shorter lead times)
claim back the ownership of No Information Sharing

personal data [...] coordination
challenges persist

long, global supply chains involving
numerous actor Complex SC structure

Table 7. Scenario aspect-modelling assumptions for Scenario 3.

Scenario 4: (Unrestricted growth + Decentralized governance). Characterized by
unrestricted growth under a very disperse economy structured and governed bottom-up.

Description: “In this scenario, citizens become increasingly aware that growing consumption
is the source of many current and future problems and does not lead to happiness.
Consequently, they demand for the establishment of a sufficiency-based system that ensures
economic activity remains within the boundaries of the ecosystem while providing sufficient
living conditions for all. GDP ceases to be a measure of progress, initiating a reverse
commodification process aimed at fostering more convivial societies. The economic activity is
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very dispersed, and the agents of change are low-scale actors and new local communities’
autonomous organisations that emerge and are attentive to levels of sufficiency and ecological
and social respect. These organisations autonomously decide what to produce and use
circularity as a tool to lead to sufficiency, where ‘“refuse, reduce, and rethink” strategies are
prioritised over recycling strategies. Local jurisdictions self-organise and self-impose a
maximum resource usage (for every limited resource) through a fair share calculation
supported by scientists and youth organisations. Also, Circularity is not only understood in
energy-material terms, as it includes biogeochemical cycles in connection to economic-based
cycles, as well as care cycles (people caring among them and valuing care in society) or power
cycles (through the distribution of power, i.e. the committee) and wealth, income and capital
cycles. Supply chains are shortened and within a proximate range to the consumption
locations. Production systems in the long term adapt to the available resources nearby. The
loops are established from the micro and, especially, the meso level, which implies greater
self-structuring needs (figuring out how to identify circularity opportunities, how to build
functional agreements, how to share resources and with whom, how to reach agreements and
enforce them). After some initial difficulties, during which coordination challenges cause waste
and unemployment, there is a prevalent trend toward federalism and democratic practices,
leading to the proliferation of models and alliances rather than hierarchical scaling-up
organisations. These developments emphasise collaborative efforts over market-driven
transactions, shaping a transformative landscape rooted in sufficiency and ecological harmony.
Some CE committees (meso-level governance structures) assume responsibility for these
functions at regional levels.

Feature

Supply Chain structure Global
Complex
Market demand Low volume

Low variability
Collaboration Yes
Efficiency of forward process Low
Constrained

Environmental constraints Yes, on emissions

Yes, on waste/by-products

Degree of circularity rate High
Increase over time
End-of-life dynamics Internal & External

End-of-life cycles Long
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Industrial symbiosis Yes

Lifecycle of the product Long
Quality of end-of-life products High
Quality of the treated products High
Efficiency of reverse process Low

Replenishment policies Push

Table 8. Modelling features for Scenario 4.

Scenario aspect Modelling assumption

supply chains are shortened Few SC Nodes

coordinating production, prices at  Enabled information sharing
regional levels

maximum resource usage Supply constraints

circularity is understood in wider

terms Closed-loops, open-loops and
symbiosis

Table 9. Scenario aspect-modelling assumptions for Scenario 4.

3.3 INDICATORS

In this section a set of possible Key Performance Indicators (KPI) for circular supply chains
are expose. Indeed, even if it not the main objective of this deliverable (a more detailed
analysis of KPIs will be carried out in D2.2 Performance evaluation framework) they serve as
an example of performance evaluation when modelling CSCs. Since sustainability consists in
the intersection of three different dimensions that are the economic, environmental, and social
dimensions, as defined by the triple bottom line, it is important to consider all of them when
evaluating the performance of a CSC.

Table 10 presents a set of possible KPlIs.
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Name Dimension

Waste generation/reduction f(environmental, economic)
External input requirement/reduction . .
. f(environmental, economic)
Emissions
f(environment)
Inventory cover/Backlog f(economic)

Fill rate/Service level

i F f(economic
Dynamic behaviour ( ic)

f(economic)

Table 10. Key performance indicators

3.4 MODELLING REQUIREMENTS

Based on the scenarios’ definition in D1.3 and on the modelling domain exposed in the
previous section, the requirements for a CSC model are set. This with the aim of properly
selecting the modelling methodology.

Dynamic. It must be able to capture the dynamic aspects of the SC, as it is well-known that,
in order to adequately forecast the performance of a SC, the dynamic effects should be
accounted for. Therefore, the time variable is a key element in the models.

Flexibility. It must be able to model very different SC structures and policies, as the scenarios
described vary substantially, not only in the number of elements and in the operation, but also
in how these elements interact among them. Therefore, in order to avoid developing scenario-
specific models from scratch, the modelling methodology should be able to allow a high degree
of re-use of the models. This would not only reduce the required modelling workload, but also
would allow fairer comparisons among the different scenarios.

Multiple granularity levels. Some of the features/indicators described in the scenarios are
systemic, whereas others are at company level or SC level. Furthermore, modelling possible
CSCs require the specification of a number of detailed features (such as their processing
capacity or storage capacity, lead/treatment times, thus, operational and circularity features)
that greatly constraint the behaviour of the system. Consequently, the modelling methodology
should be able to incorporate these aspects.

Multi-range. Some of the indicators described in Section 3.3. refer to the short term, whereas
others are more long-term oriented, or both.

Bottom-up and Top-down approaches. The modelling methodology must handle both
approaches, as some scenarios are clearly bottom-up while others are top-down.
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Complexity. Some of the future circular scenarios described may entail many heterogeneous
entities with complex, non-linear relationships among them (possibly including a non-rational
behaviour by some of them). Therefore, the modelling methodology must be able to capture
these complexities.

Structural and functional optimization capabilities. The four scenarios foresee different
forms of optimization: while the modernist SC points to a (SC-wise) optimization via
coordination among partners (rather a functional optimization, i.e. an optimization of its
performance), the Planned circularity scenario envisions a centralized allocation of the
resources across the system, which possibly entails a sort of centralized (i.e. ‘optimized’)
system design (rather a structural optimization, i.e. an optimization of the structure of the
system). While both point out to optimization, from the modelling viewpoint it is necessary to
distinguish between a centralized SC-design (which is achieved by a centralized matching of
the supply and the demand), and the SC-level coordination (which is achieved via operation
on an existing network). No single modelling technique can easily cope with such diverse
features, so probably a combination of techniques must be sought.

4 MODELLING METHODOLOGIES

4.1 METHODS FOR SUPPLY CHAIN DYNAMICS

Modelling SC dynamics have been approached by different methodologies in the past years.
Each modelling methodology is devoted to capture the dynamic behaviour of the SC, but they
have different benefits and drawbacks in terms of the outcome they provide. Therefore, the
adopted modelling method is mainly related to the research objective.

Different classifications of these methods have been proposed by relevant authors in the field.
In the following it follows a summary of the main modelling methodologies adopted for
researching the SC dynamics.

Operational Research theory: The problem is expressed as a difference equation, with some
parameter variables. The solution sought is one that explicitly minimises a cost function (or a
surrogate), for an assumed set of operating conditions. The dynamic performance is implied
by the mathematical solution to the problem (Geary et al. 2006). OR theory comprises a
disparate collection of mathematical techniques, such as linear programming, queuing theory,
Markov chains and dynamic programming. Although not strictly modelling techniques, they
are very commonly used in industry (Riddals et al. 2000).

Analytical models: these models describe the behaviour of the system using a humber of
formulae, so the variables of interest in the system may be expressed as a closed function of
a series of input parameters. This modelling approach allows quantifying the effect of the input
parameters in the variables of interest as well as deriving the values of these parameters to
optimise the variables of interest. Their main drawback is the difficulty to obtain these closed
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formulae, which sometimes require the formulation of simplifying hypotheses that may restrict
their range of application (Framinan 2022).

Control theory: The problem is expressed in the frequency domain. Using an assumed
control law, the solution is obtained by shaping the system frequency response to suit the
needs of the user. The dynamic performance is explicit from inspecting this response, whereas
the cost performance is implicit (Geary et al. 2006). Control Theory may assume either
continuous or discrete time. The approach is generally based on linear systems of transfer
functions. A transfer function relates the output of a system to the input of the system in
frequency space. The transformation simplifies the calculations considerably, which otherwise
would have been complex if executed in the time domain. In order to derive the final solution
in the time domain, the solution is converted back from the frequency into the time domain
(Holweg and Disney 2005).

Simulation models: These models essentially replicate in the computer the sequence of
events followed by the real system that it is intended to model, either as a whole (discrete-
event or continuous models) or the behaviour of each one of the individuals or agents in the
system, as well as their interactions (agent-based simulation models). Simulation models can
be enormously rich as they can capture very complex behaviours, but, however, they are not,
in principle, well suited for optimising the variables of interest (Framinan 2022).

e Continuous time approach: The continuous time models are based on the notion
that one observes all states of the system continuously (Holweg and Disney, 2005).
The system must be considered at an aggregate level, in which individual entities in
the system (products) are not considered. Rather, they are aggregated into levels and
flow rates. Consequently, these methods are not suited to production processes in
which each individual entity has an impact on the fundamental state of the system
(Riddals et al. 2000). Key approaches include differential equations, often
implemented through simulation software like VenSim or iThink.

o Discrete time approach: Discrete time approaches assume that time happens at
discrete intervals of time. The key implication for the mathematical computation of
discrete time systems is that one needs a firm sequence of events (Holweg and Disney,
2005). This approach comprises jobs and resources. Jobs, which, for the majority of
applications, are physical entities, travel from resource to resource where their onward
progress through the system is determined. The emergence of the discrete time
simulation approach was engendered by the deficiencies of differential equation
approaches to the solution of even simple problems (Riddals et al. 2006). A major
drawback of this approach is the lack of a succinct descriptive language for their
formulation. Consequently, the discrete time simulation approach has been primarily
associated with “black box’ approaches through a variety of different software, like
Arena or Anylogic.

e Multi-agent approach: Multi-agent simulation have the capacity to consider the
interactions between large numbers of heterogeneous firms (Hearnshaw and Wilson,

2013). This approach assumes that the system is of high complexity, and thus it is very
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difficult (or even impossible) to understand the system as a whole. Instead, the
modeller can focus on individual elements of the system, and the global behaviour,
that cannot be predicted in advance, emerges from their interactions, i.e. a bottom-up
approach (Nilsson and Darley, 2006). The adoption of a multi-agent approach has
several additional benefits, such as an increased modelling realism (e.g., individual
agents can be comparable to machines, vehicles, products, or groups of such, found
in areal life context), heterogeneity (e.g., there is no need to aggregate different agents’
behaviours into average variables), bounded rationality (e.g., agents have local
information, having their own goals and policies), scalability, and flexibility (Dominguez
and Cannella, 2020).

4.2 METHODS FOR CIRCULAR ECONOMY

A recent review by Demartini et al. (2021) surveys the scientific literature with the aim of
identifying and the most used modelling approaches for circular economy and
sustainability studies. From the 43 relevant works that were in-depth analysed, the following
modelling approaches were identified: Agent Based Modelling (ABM) with 15 publications,
followed by Input — Output model (IOM) with 6 publications, Lifecycle Assessment (LCA),
Material Flow Analysis (MFA), Network Analysis (NA), Mixed Integer Linear Programming
(MILP) with 4 publications respectively, and DEMATEL, Ecological network analysis (ENA),
and System Dynamics (SD) with 2 publications, respectively. The following is an overview of
each modelling approach.

Agent-Based Modelling. ABM has gained significant popularity across various disciplines in
recent years. ABM provides a framework to describe the behaviours of complex systems
through the interactions of individual agents. These agents are autonomous, heterogeneous,
and capable of communication and cooperation (Castro et al., 2020). The primary advantage
of adopting ABM in an information systems (IS) network lies in its ability to elucidate learning
processes and complex macrostructures by examining the interactions among individual
agents. However, it is important to note that ABM is highly path-dependent, requiring extensive
sets of parameters and data to accurately describe agent behaviours. Additionally, validation
methods can be challenging due to the complexity involved in aligning simulations with real-
world data (Pasqualino and Jones, 2020).

Input—Output Model. The IOM is a top-down approach designed to track transactions
between activities, measured in monetary units, and extend them to the environmental level
in terms of greenhouse gas (GHG) emissions (environmental extended input—output analysis)
(Yazan et al., 2016). IOM is frequently used to analyse carbon footprints by accounting for
both direct and indirect flows. It is often combined with other modelling methodologies to
address dynamic problems (Pollitt et al., 2015). A common combination is IOM and LCA,
which evaluates IS by considering different levels of analysis: LCA focuses on micro entities,
while IOM addresses macro entities (Fang et al., 2017). IOM typically operates under three
key assumptions: (i) linearity between inputs and outputs, (ii) continuity of system behaviour
into the future, and (iii) instantaneous adjustment of productive factors to achieve production
(Pasqualino and Jones, 2020). Consequently, its application is often limited to short-term
evaluations. The primary weakness of IOM lies in the vast amounts of data required to create
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the input—output table. Inaccuracies can occur if this data is not precise or if it includes varying
degrees of aggregation (Mattila et al., 2010).

Life Cycle Assessment. LCA is a comprehensive tool used to quantify the amounts of
resources, materials, and energy consumed, as well as the environmental impacts generated,
throughout a product's life cycle—from raw material extraction to its end of life (Finnveden et
al., 2009). LCA is frequently integrated with other methodologies such as DES, SD, and IOM
(Lofgren and Tillman, 2011; Fang et al., 2017; Mattila et al., 2010). This integration allows for
the assessment of impacts on both micro entities (via LCA) and macro entities (via DES, SD,
and IOM), providing a holistic view of environmental sustainability.

Material Flow Analysis. Material Flow Analysis (MFA) is an analytical method designed to
qguantify the stocks and flows of materials and energy, aiming to assess environmental
sustainability through various environmental indicators (Sendra et al., 2007). MFA is grounded
in the concept of "mass conservation" and employs input/output flows that encompass both
material and economic data. It is commonly used to evaluate the environmental impact at the
macro level, such as for countries and regions, but is less frequently applied to micro entities
like individual products and processes, for which LCA is generally preferred. The main
limitations of MFA include its lack of a life cycle perspective and its inability to fully reflect
ecosystem impacts (Sun et al., 2017). When applying MFA to industrial symbiosis (IS), specific
considerations need to be addressed, as highlighted by Sendra et al. (2007): 1. The integration
of MFA with energy and water flow analysis is necessary; 2. Indirect flows associated with
companies should be included; 3. Evaluations should encompass both subsystems (individual
companies) and the entire network.

Network Analysis. NA is a method used to evaluate the structural and functional
characteristics of systems by examining the stock and flow of resources among entities,
thereby revealing the underlying network patterns (Szyrmer and Ulanowicz, 1987). In the
context of IS, NA employs metrics such as density, centrality, and connectivity to analyse the
network structure and understand the complexity of relationships between companies (Zhang
et al., 2015a,b; Chopra and Khanna, 2014). NA is also valuable for identifying the functional
properties of the network, visually depicting relationships (social networks), quantifying
economic and environmental interactions, and defining system boundaries (Zhang et al.,
2015a,b).

Mixed Integer Linear Programming. MILP involves optimization problems where some
variables are constrained to be integers while others can be non-integers. MILP is widely used
in industrial applications such as production planning and scheduling. In IS networks, MILP
can be employed to compare different design schemes and processes, as well as to identify
potential improvements in the network structure (Wolf and Karlsson, 2008).

Decision Making Trial and Evaluation Laboratory. DEMATEL is an effective method for
identifying cause-and-effect chain components in complex systems. It evaluates
interdependent relationships among factors, identifying critical ones through a visual structural
model. In IS, DEMATEL generates a cause-and-effect map that shows the impact of each
company or factor on others (Lin, 2013). These results can be used to assess the primary
causal factors that significantly affect the network.
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Ecological Network Analysis. ENA tracks the flow of energy and materials from inputs to
outputs within a network, analysing the system's structure and function. Applying ENA to IS
helps capture indirect interactions, providing deeper insights into the functional and structural
properties of the system through ecological flows (Wu et al., 2019).

System Dynamics. SD is an approach to understanding the nonlinear behaviour of complex
systems over time by utilizing stocks, flows, and feedback loops. Forrester (1970) outlined key
characteristics of SD: (i) system boundaries, (ii) reinforcing and balancing feedback loops, (iii)
stocks, which are accumulations within the feedback loops, and (iv) flows, which are the rates
of change. SD aims to understand the generation of dynamic changes and to develop
strategies and policies to improve system performance (Cui et al., 2018). It traces patterns of
system behaviour through feedback structures at an aggregate level over time, making it a
suitable method for IS as it captures causal processes and feedback loops (Morales and
Diemer, 2019).

All these methods have advantages, but also have their own limitations in order to capture
different behaviours of IS and sustainable SCs. As such, some authors have advocated for a
multi-method approach, in which several methods are combined together in order to
overcome some of their limitations. Some of the most important multi-method approaches that
can be found in the literature related to circular economy and IS are described next.

DES-SD. The DES-SD hybrid approach is predominantly employed for studying sustainability
challenges, though it has not yet been applied to issues of IS. Both DES and SD have been
extensively utilized to analyse sustainability within the healthcare sector, as demonstrated in
studies by Mielczarek (2019), Mielczarek and Zabawa (2016), and Landa et al. (2018).
Additionally, some research has leveraged the DES-SD hybrid model to address specific
supply chain and industrial sustainability concerns, including work by Doluweera et al. (2020),
Oleghe (2019), and Fakhimi et al. (2015). In this multi-method approach, DES is used to model
specific entities, employing state variables that change at discrete intervals. This method
effectively captures stochastic elements such as uncertainty and unexpected disruptions,
monitoring the evolution of entities in a top-down manner. On the other hand, SD offers a
feedback perspective, illustrating the broader system impact of DES entities. It identifies the
connections and delays between DES components through feedback loops, uncovering
cause-and-effect relationships and investigating the system's dynamic and evolutionary
behaviours, also in a top-down approach.

ABM-SD. Several studies utilize the ABM-SD hybrid approach to focus on sustainability issues,
including Sitepu et al. (2016) and Golroudbary et al. (2019). Romero and Ruiz (2014) also
propose ABM-SD as a suitable method for addressing IS. In this combined approach, SD
assumes homogeneity and leverages aggregation concepts. Stocks and flows are aligned with
agents to store information critical for their learning processes and to understand their states.
ABM captures the heterogeneity of individuals within an interconnected network by utilizing
data stored in SD. This approach also employs the dynamic nature of feedback loops to
manage agent behaviours over short and long-term periods.

ABM-DES. The ABM-DES hybrid approach is mainly used for analysing sustainable supply
chain issues, as shown in studies by Farsi et al. (2019), Mittal and Krejci (2019), and Rondini
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etal. (2017). ABM provides a high degree of flexibility and autonomy encapsulation, effectively
modelling and capturing the autonomous behaviours of DES entities. The events modelled
with DES enable ABM to offer significant flexibility in representing various agent behaviours,
cognition, and decision-making processes. DES, known for its superior runtime performance
compared to ABM, monitors agent performances and creates specific entities and events that
impact agents.

ABM-DES-SD. A few studies integrate all three simulation methods—ABM, DES, and SD—to
provide a comprehensive analysis, including works by Gu and Kunc (2019), Elia et al. (2016),
and Wang et al. (2014). ABM models complex adaptive systems using self-organizing
properties, capturing emergent and learning behaviours. DES simulates distinct agent
behaviours by modelling sequences of events at specific times, considering resources,
capacities, and interaction rules. SD examines the behavioural patterns and interactions within
the network, utilizing aggregate variables to provide a holistic view of the system.

The review highlights the strengths and limitations of each method, advocating for hybrid
approaches to address their shortcomings. For instance, the DES-SD hybrid combines
Discrete Event Simulation (DES) with System Dynamics (SD) to capture both specific events
and broader system feedbacks. DES is particularly effective at modelling specific entities and
their stochastic behaviours, allowing for detailed examination of uncertainties and disruptions
at discrete time intervals. On the other hand, SD offers a macroscopic perspective by focusing
on feedback loops and the flow of resources over time. By combining these two methods, the
DES-SD hybrid can provide a more holistic analysis of sustainability challenges, considering
both micro-level events and macro-level system behaviours. Other hybrid approaches, such
as ABM-SD and ABM-DES, also integrate multiple methodologies to leverage their respective
strengths. The ABM-SD hybrid approach combines Agent-Based Modelling (ABM) with SD,
effectively capturing the heterogeneity and interactions of individual agents while also
considering the dynamic feedback mechanisms within the system. This approach is
particularly useful for understanding how individual behaviours and decisions impact overall
system dynamics over both short and long terms. Similarly, the ABM-DES hybrid approach
merges the flexibility and autonomy encapsulation of ABM with the efficiency and performance
of DES. ABM provides the ability to model complex adaptive behaviours of agents within a
system, while DES offers superior runtime performance and detailed event-based analysis.
This combination allows for a nuanced study of sustainable supply chains, where individual
agent behaviours and their interactions can be examined in the context of larger system
processes and constraints. By integrating these various methods, hybrid approaches provide
a comprehensive toolset for studying sustainable supply chains and industrial symbiosis. They
enable researchers to address the limitations of individual models, such as the extensive data
requirements of ABM or the aggregation issues in IOM, and to create more robust and
accurate simulations of real-world systems. This multi-method strategy enhances the ability to
develop effective strategies and policies for sustainability
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5 SELECTION OF MODELLING METHODOLOGIES

In the previous sections we have reviewed the main modelling methodologies for the analysis
of supply chain dynamics and circular economy. We conclude that no single methodology
seems to be able to fulfil all the requirements posed in section 3.4. Therefore, a combination
of different methodologies (also known as a multi-method or hybrid approach) will be required.
Demartini et al. (2022) also advocates for a multi-method for modelling IS. More specifically,
in view of the requisites, it seems that a combination of analytical models (at the
design/allocation level) and simulation (at an operation level) could fulfil the requisites posed.

Analytical models are top-down approaches that can be treated using optimization techniques,
which are necessary to optimize the structure and functionality of the four scenarios that
will be analysed in this project. On the other hand, simulation has been widely used in SC
evaluations (Corsini et al., 2023), and it can support managers in the decision-making process
because it can help them understand complexities, dynamics and interactions that
characterize SCs (Oliveira et al., 2016). Simulation allows for an accurate replication of the
dynamic aspects of the SC. In addition, simulation can easily accommodate heterogeneous
entities with complex, non-linear relationships among them, making possible the development
of the complex models that are required to capture the behaviour of ISNs. Also, current
computer technology coped with the high efficiency of most simulation platforms make
possible to run complex multi-range simulations (i.e., short-term and long-term) in a very short
time. Within simulation techniques, researchers have extensively used ABM, due to the link
between agents and SC members (Cannella et al., 2018). ABM refers to a category of
computational models invoking the dynamic actions, reactions, and intercommunication
protocols among the agents in a sharing environment to evaluate their performance (Abar et
al., 2017). This is a bottom-up approach that allows to model the individual behaviour of the
(physical and logical) elements in the SC and describe their interactions. This has several
advantages for SC simulation, such as the possibility to develop and implement simulation
models with multiple layers and achieve a resilient and flexible system (Abar et al., 2017).
These features permit modelling at multiple granularity levels, from individual elements
(such as personal or material) to higher level functionalities (such as departments or an entire
company). In addition, each agent or element of the model can be combined with other agents
to form a higher-level agent, allowing for nested structures and a high re-usability of each
agent, model or sub-model developed. Therefore, ABM shows a high flexibility, and can be
used to model the quite different SC structures, behaviours, and policies derived from the
scenarios with less effort than other simulation techniques (such as SD, or DES) in which the
elements and their behaviour are usually ‘hardwired’. However, SD and DES models can be
embedded within an agent (ABM-SD-DES approach, see section 4.2), enhancing the
complexity of agent’s behaviours and permitting a combination of bottom-up and top-down
approaches. Finally, ABM is fully consistent with SC realities (Long and Zhang, 2014), and
represents one of the most appropriate methodologies to analyse the complex dynamics that
characterize an industrial system adopting CE practices (Romero and Ruiz, 2014; Demartini
et al., 2022), as it is demonstrated by recent publications in the field of IS (Fraccascia, 2019;
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Yazan & Fraccascia, 2020) as well as in the field of CLSCs (Diaz Fernandez et al., 2012;
Dominguez et al., 2021; Ponte et al., 2017; Naghavi et al., 2020).

5.2 SELECTION OF MODELLING TOOLS

Simulation models are developed using computer tools, which often consist in a set of libraries
with pre-programmed functionalities. These tools may come with additional features such a
user interface, visualization environment (to visualize the behaviour of the model in real time)
or auxiliary elements for data analysis. Following the discussion of the previous section, in this
section we describe some of the most important ABM tools and provide a categorization of
such tools according to a set of key features to identify the most suitable one for the
development of the SC models that are required by this project. In the following we provide a
brief description of each tool:

Netlogo: NetLogo is a versatile and user-friendly programming environment designed for
simulating natural and social phenomena, particularly suited for agent-based modelling.
Developed by Uri Wilensky in 1999 at Northwestern University, it allows users to create and
manipulate models where individual agents operate based on defined rules, leading to
complex, emergent behaviours. With a rich library of pre-built models, an intuitive graphical
interface, and robust visualization tools, NetLogo is accessible to users at all skill levels. It is
widely used in education and research for exploring complex systems in fields such as ecology,
economics, social sciences, and beyond.

Repast: Repast (Recursive Porous Agent Simulation Toolkit) is a sophisticated and flexible
platform for creating, running, and analysing agent-based simulations. Initially developed by
the University of Chicago's Social Science Research Computing group, Repast is designed to
facilitate complex modelling and simulations of agent interactions within dynamic
environments. It offers a range of libraries and tools that support large-scale simulations, high-
performance computing, and integration with other software. Repast is widely used in research
across various disciplines, including social science, economics, biology, and environmental
science, enabling researchers to model and study intricate systems and phenomena. Its
modular architecture and support for multiple programming languages, including Java, Python,
and C#, make it a powerful tool for developing detailed and scalable simulations.

Anylogic: AnyLogic is a powerful and versatile simulation software designed for modelling
complex systems and processes. Developed by The AnyLogic Company, it supports multiple
simulation methodologies, including discrete event simulation (DES), agent-based modelling
(ABM), and system dynamics (SD), making it unique in its ability to model diverse types of
systems within a single platform. AnyLogic is widely used across various industries, such as
logistics, manufacturing, healthcare, and transportation, for tasks like optimizing operations,
analysing SCs, and predicting system behaviour under different scenarios. Its user-friendly
interface, extensive libraries, and integration capabilities with other tools and databases
provide a comprehensive environment for developing, running, and analysing simulations,
helping organizations make informed decisions and improve efficiency.

MASON: MASON (Multi-Agent Simulation Of Neighborhoods) is a high-performance, discrete-
event multi-agent simulation library developed in Java by George Mason University's
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Evolutionary Computation Laboratory and the Center for Social Complexity. Designed for
creating and running large-scale, computationally intensive simulations, MASON provides a
flexible and efficient framework for developing complex models of interacting agents. It is
particularly well-suited for research applications in fields such as social science, economics,
and artificial intelligence, where understanding the behaviour of decentralized systems is
crucial. MASON's architecture is highly modular, allowing for the easy integration of custom
visualization and analysis tools, and its ability to handle extensive simulations makes it a
valuable tool for researchers and developers seeking to explore and analyse intricate system
dynamics.

GAMA: GAMA (GIS Agent-based Modelling Architecture) is a robust and extensible simulation
platform designed for building spatially explicit agent-based models. Developed by the GAMA
development team, it is tailored for researchers and practitioners who need to model complex
systems where geographic information systems (GIS) play a crucial role. GAMA supports the
creation of large-scale simulations with detailed environmental data, allowing agents to
interact with rich spatial environments. It features a user-friendly interface, powerful
visualization tools, and a flexible scripting language that enables the development of
sophisticated models. GAMA is widely used in fields such as urban planning, ecology, disaster
management, and socio-economic studies, providing valuable insights into spatial dynamics
and helping to inform decision-making processes. Its ability to integrate with various data
sources and simulation frameworks makes it a versatile tool for analysing and understanding
complex spatial phenomena.

Python (Mesa and PyABM): Python is a versatile and widely used programming language,
and several libraries and frameworks support agent-based modelling. Mesa and PyABM are
examples of Python-based libraries that facilitate the development of agent-based models.

e Mesa is an open-source Python library designed for building and visualizing agent-
based models. Developed with a focus on simplicity and ease of use, Mesa enables
researchers, educators, and developers to create complex simulations with minimal
coding effort. The library provides a flexible and modular framework, supporting the
rapid development and analysis of models where individual agents interact within a
defined environment. Mesa includes built-in tools for visualization, data collection, and
analysis, making it easy to monitor and interpret the behaviour of agents over time. Its
integration with the Python ecosystem allows users to leverage a wide range of
libraries and tools for further data processing and visualization. Mesa is widely used in
academic research, education, and industry for modelling social systems, economic
processes, ecological dynamics, and more, making it a valuable resource for
understanding and exploring agent-based systems.

e PyABM (Python Agent-Based Modelling) is an open-source library designed to
facilitate the development and analysis of agent-based models using the Python
programming language. PyABM aims to provide a straightforward and flexible
framework for researchers, educators, and developers to create simulations where
individual agents operate based on specified rules and interact within a defined
environment. The library supports the construction of complex models with minimal
overhead, making it accessible to users with varying levels of programming expertise.
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PyABM integrates seamlessly with Python's extensive ecosystem of scientific and data
analysis tools, enabling users to perform in-depth analysis and visualization of their
simulations. It is particularly useful for studying dynamic systems in fields such as
social science, economics, ecology, and epidemiology, offering a powerful toolset for
exploring and understanding the emergent behaviours of agent-based systems.

AgentScript: AgentScript is a lightweight, open-source library designed for building agent-
based models in JavaScript. Tailored for web-based simulations, AgentScript allows users to
create and run models directly in the browser, making it highly accessible and easy to share.
The library supports the creation of individual agents that follow specified rules and interact
within their environment, facilitating the exploration of complex system behaviours. With its
intuitive syntax and seamless integration with web technologies, AgentScript is ideal for
educators, researchers, and developers who want to visualize and analyse agent-based
models online. It is particularly useful for interactive demonstrations, educational tools, and
research applications that benefit from the accessibility and immediacy of web-based
deployment. By leveraging JavaScript, AgentScript takes advantage of modern web
development capabilities, providing a versatile platform for dynamic and interactive
simulations.

JADE: JADE (Java Agent Development Framework) is a comprehensive software framework
for developing multi-agent systems in Java. Designed to simplify the creation of distributed
and collaborative applications, JADE provides a set of tools and libraries that facilitate the
implementation of intelligent agents and the coordination of their interactions. The framework
offers a rich set of features, including agent communication, message passing, and agent
lifecycle management, enabling developers to build complex systems where agents can
autonomously interact with each other and their environment. JADE supports various
communication protocols and standards, making it suitable for building interoperable and
scalable multi-agent systems. Its modular architecture and extensive documentation make it
a popular choice among researchers, developers, and organizations seeking to leverage
agent-based technology for solving complex real-world problems. JADE's versatility and
robustness make it a valuable tool for building intelligent systems in domains such as
automation, logistics, telecommunications, and more.

SCOPE: SCOPE is software tool for complex SC modelling. This tool was implemented using
the Swarm libraries, specifically designed to build MAS-based models. The scalability of MAS
modelling allows SCOPE to create a wide range of SC configurations with any number of
companies distributed in any configuration along the SC. Agents can be customized to model
a wide range of operational policies and behaviours and represent the different nodes of the
SC. Thus, every node in the model can be set up with different policies and parameter values
for the different business functions. The schedules (a key feature of Swarm) implement the
sequence of actions that each agent perform during the simulation.

In order to select the most appropriate ABM tool, according to the requirements of the present
project, we have defined a set of key features, which are summarized next:
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User Interface: A user interface generally makes easier the development, treatment,
and analysis of simulation models

Programming Language: Describes the programming language of the tool.

Multimethod: The platform allows the creation of simulation models combining ABM
with other suitable techniques, such as DES or SD. This is an important feature to
consider, since it has several important advantages as discussed in previous sections.

Visualization tools: The ABM tool integrates visualization tools or libraries that allow
the visualization of the results in real time, as well as the visualization of the behaviour
of the model (2D or 3D). This feature makes the interpretation of the results and the
debugging of the model easier for the users, and it helps to the presentation of the
results to other member of the project.

Support: Refers to the current support from the developers and the community in
terms of updates, forums, material, etc.

License: Refers to the type of licence/s available (Open Source, PLE, Professional,
etc.).

Team experience: Refers to the previous experience of the team working with the tool.

Publications: Number of scientific articles written in English published in journals
within the topic of “supply chains”.

Other features: Describes other important features of each tool that may help to make
a decision.

The table below provides a categorization of each ABM tool according to these features.
Based on the provided table, AnyLogic stands out as the best software for ABM for several
reasons:

1.

Multimethod Simulation: AnyLogic supports multiple modelling methods, including DES,
SD, and ABM. This flexibility allows modellers to combine different methods to suit their
specific needs, providing a more comprehensive modelling approach compared to other
tools that may focus on only one or two methods.

Visualization Tools: AnyLogic offers advanced visualization tools, which are crucial for
developing, analysing, and presenting models. High-quality visualization helps in
understanding complex agent interactions and system behaviours, making it easier to
communicate findings to stakeholders.

Support: The level of support for AnylLogic is rated as high, which is essential for
troubleshooting, learning, and optimizing models. Good support can significantly reduce
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the time needed to develop and refine models, ensuring users can effectively utilize the
software's capabilities.

4. Licensing Options: AnyLogic offers various licensing options, including a free Personal
Learning Edition (PLE), as well as university and professional licenses. This range of
options makes it accessible for different user groups, from students and educators to
professional modellers.

5. Team Experience: The team experience with AnyLogic is rated as high, indicating that
that the team has been substantially working with the software, including some published
works in high quality journals.

6. Publications: With 39 publications, AnyLogic has a significant presence in academic and
professional research. This high number of publications suggests that AnyLogic is a
trusted and widely used tool in the field of simulation and modelling, contributing to its
credibility and validation by the research community.

7. Additional Features: AnyLogic offers a range of additional features that enhance its utility,
such as experimentation and optimization tools, as well as integration and connectivity
capabilities. These features enable users to conduct thorough experiments and optimize
their models efficiently, while also integrating with other systems and tools.

Comparatively, other software like NetLogo, Repast, MASON, and others have their own
strengths but may lack in one or more areas where AnyLogic excels. For example, NetLogo
is praised for its ease of use and integrated modelling environment, but it does not support
multimethod simulation. Repast offers good multi-language support and integration with other
tools but doesn't match AnyLogic's breadth of simulation methods and publication record.
Finally, SCOPE is the only ABM tool rated as SC oriented, but it lacks of current support, user
interface or visualization tools.

Therefore, considering the comprehensive suite of features, high support level, flexible
licensing, team experience, and substantial user and publication base, AnyLogic emerges as
the most suitable software for the development of this project.
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Interf | Language | Multimethod Vis. Support | License Team No. Other features
ace tools experience of
pubs.
NetLogo Yes Logo No Yes High Open-source | None 9 | Ease of use
(Java- Integrated Modelling Environment
based) Spatial dynamics
Repast Yes Java, Yes (SD) Yes High Open-source | None 6 | Designed for use on workstations and small computing
Python, clusters.
and C# Multi-Language Support.
Easy Integration with Other Tools
AnyLogic Yes Java Yes (DES, SD) Yes High Free (PLE) High 39 | Good integration of 3 simulation methods
Experimentation and optimization tools
University Integration and connectivity
Professional
MASON No Java Yes (DES) Yes Medium Academic None 4 | Efficiency and performance
Free License Tools and Libraries (spatial, scheduling,)
Support for GIS integration
GAMA Yes GAML No Yes Medium Open-source None 2 | Ease of use
Spatial dynamics, integrating geographic information systems
GIS
g’oolg for experimentation and analysis
Python No Python No Yes High Open-source Low 1 | Ease of use
(Mesa, Batch processing and data collection
PyABM) Extensibility
AgentScript | No JavaScript No Yes High Open-source None 0 | Ease of use
Web-Based Modelling
Lightweight and Fast
JADE Yes JADE No Yes High Free (limited) None 18 | Robust infrastructure for agent communication (FIPA
compliance)
Commercial Scalability and extensibility
Interoperability
SCOPE No Java No No Low Owned High 12 | Supply Chain oriented

Conceived for modelling complex structures
Includes traditional and circular policies

Table 11. Summary of tools
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6 CONCEPTUAL MODELLING FRAMEWORK

Considering all that has been discussed the previous Sections, here a conceptual modelling
framework for a generic node in a Circular Supply Chain is proposed.

Noting that the CSC definition provided by Batista et al. (2018) "the coordinated forward and
reverse supply chains via purposeful business ecosystem integration for value creation from
products/services, by-products and useful waste flows" a SC node i belonging to a CSC, in
addition to the forward input and output material flows there are new flows of different nature.
They can be Reverse flows, when they involve EOL products, i.e. Closed-loops or Open-loops,
and they can be Symbiotic flows, when they involve waste/by-products generated in
production processes. In the former case, closed-loops interest the same SC, while open-
loops involve different SC. In the latter, also the flows can be inter-SC and intra-SC.
Specifically, if inter-SC all SC nodes of different SCs that belong to the same CSC can provide
the symbiotic flow for a specific node, if intra-SC, all the SC nodes of the same SC except for
the direct downstream node, as it is its customer for the main product.

According to these definitions, it follows that in a CSC composed of K SCs where each k SC
is composed of Nk nodes, the ik-th node can have YX_; N, — 2 possible outgoing symbiotic
flows, YX_, N, — 1 possible incoming symbiotic flows, K -1 possible incoming open-loop
reverse flows, 1 possible incoming closed-loop reverse flow.

K-1
open-loop

reverse flows _
=1 Ni- 1

symbiotic flows

input from i-1 ———p Node i — output for i+1

v wasle

closed-loop

Iy 7
Ny -2
reverse flow L=t N

symbiotic flows
Figure 2. Circular Supply Chain Node

The generic node abstraction allows the model to be applicable across different CSC
archetype since each node can be viewed as a modular component that can be easily
integrated into a more complex CSS. Thus, this modularity supports the construction of
complex CSC by combining multiple nodes with defined interfaces as it can be also adjusted
to reflect different processes, resources, and interactions specific to each SC node. As well
as the four different scenarios above mentioned.
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