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1. EXECUTIVE SUMMARY  

This deliverable aims to provide the methodological foundation for developing the models of 

the industrial partners’ supply chains in order to assess the future circular scenarios 

envisioned in the project, so scientifically rigorous models and analysis can be developed in 

order to obtain sound generalisable outcomes. 

First, we provide in Section 2 precise definitions for the different terms employed in the 

deliverable (i.e. models, modelling methodologies/approaches, and modelling tools). Then in 

Section 3, we elaborate the modelling features required to represent in detail the future circular 

supply chain scenarios described in WP1 (i.e. operational features and circularity features). 

Different ranges of values for each of these features are assigned for the different future 

circular supply chain scenarios (Section 3.2), according to the results of a survey conducted 

among the participants in the project. With all these elements, it is possible to characterise in 

detail the envisioned scenarios. Furthermore, a number of performance indicators are derived 

in Section 3.3. (even if these are provisional ones depending on the finalisation of the 

deliverable D2.2 later in the working plan of the project) in order to assess these scenarios 

according to the economic, environmental, and social dimensions. In Section 3.4., based on 

the features identified for the different scenarios, a number of modelling requirements (i.e. the 

characteristics that the models should possess in order to properly describe these scenarios) 

are developed. These modelling requirements would serve to select among the most suitable 

modelling methodologies commonly used in supply chain dynamics (described in Section 4.1) 

and circular economy (described in Section 4.2). As it turns out from the analysis carried out 

in Section 5, no single modelling methodology can match all modelling requirements, therefore 

a mix of modelling methodologies are selected. More specifically, analytical modelling is 

selected for developing models at the design/allocation level, while simulation is selected for 

developing models at the operational level. Finally, the main simulation tools available are 

discussed and ranked according to a number of criteria, and the AnyLogic tool is selected as 

the most suitable one.  

This document concludes by presenting in Section 6 the modelling framework (i.e. the abstract 

model of the generic nodes in a circular supply chain), which would constitute the basic entity 

for the AnyLogic and analytical models to be developed from the industrial partners’ supply 

chains in the deliverable D3.2.  
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2. INTRODUCTION: QUANTITATIVE MODELS 

Quantitative models use a collection of variables that change within a specified range, 

explicitly defining the quantitative and causal relationships between them. This explicit 

definition allows the magnitude of these relationships to be meaningful and directly connected 

to actual variable values in real-world scenarios (Hillier and Lieberman 2021). 

Since their inception, quantitative models have formed the backbone of most operations 

research. In Europe, this field became known as Operational Research, while in the USA, it 

was termed Operations Research and served as a foundation for early management 

consulting (Pidd 2009). Initially, quantitative modelling was heavily focused on addressing 

practical, real-world issues in operations management rather than on advancing scientific 

understanding (Ackoff 1956). However, by the 1960s, particularly in the USA, the field saw the 

emergence of a robust academic research trajectory. Researchers began tackling more 

abstract problems, using these investigations to develop scientific knowledge within 

operations management (Bertrand et al., 2024). During this period, much of the research 

drifted away from its empirical roots, with methodologies evolving primarily for these 

theoretical inquiries. As a result, empirically oriented research methodologies were neglected 

for over three decades. It was not until the 1990s that empirical research began to experience 

a resurgence in Operations Management. Initially, this revival had a predominantly qualitative 

focus (Meredith, 2001). With the advent of digital data and the incorporation of laboratory 

experiments into research methodologies in the 2000s, the empirical nature of quantitative, 

model-based research in Operations Management was significantly enhanced (Ketokivi and 

Choi, 2014). The research scope also expanded from focusing on single companies to 

encompassing entire supply chains. Consequently, the paradigms of model-based research 

in Operations Management have been extended to the broader field of Supply Chain 

Management. (Simchi-Levi, D et al. 2007).  

In the subsequent subsection, we delve into an exploration of key concepts for understanding 

the dynamics of modelling in various domains. Specifically, we define which is a "model," 

elucidating its meaning as a simplified representation of a complex system or phenomenon.  

Also, we discuss the concept of "mathematical modelling", a powerful approach that 

harnesses mathematical language to describe and analyse complex systems, and how it 

enables us to quantify relationships between variables and simulate the behaviour of dynamic 

systems. Also, we present the concept of “computer simulation", a cutting-edge technique that 

leverages computational power to simulate real-world phenomena. Finally, we turn our 

attention to the critical role of "modelling assumptions" in shaping the modelling process, 

exploring how they define the scope and boundaries of a model.  

 2.1 MODELS: DEFINITONS AND FEATURES   

A model is a simplified representation of reality that is designed to explain, predict, or manage 

the behaviour of real-world systems or phenomena. Models serve as tools to understand 
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complex systems by highlighting their essential features while omitting non-essential details 

(Bertrand et al., 2024). In particular, they can be categorized as follows:   

1. Physical models: are tangible, scaled-down versions of objects or systems. For 

example, an architectural model of a building helps visualize its design and structure 

before actual construction (Chauhan, 2023). 

2. Conceptual models: are abstract representations that use concepts and ideas to 

convey understanding. They include diagrams, flowcharts, and organizational charts 

that illustrate relationships and processes within a system (Thalheim 2019). 

3. Mathematical models: use mathematical language and equations to describe the 

behaviour and characteristics of a system. They are particularly powerful in fields like 

physics, economics, biology, and engineering, where they help simulate real-world 

phenomena and predict future outcomes (Azizi et al. 2021). 

Among these three approaches, mathematical models are particularly appropriate in 

Operations Management and Supply Chain Management because they use equations to 

accurately describe, simulate, and predict complex system behaviours, facilitating better 

decision-making and optimization by focusing on essential features and omitting non-essential 

details (Bertrand et al., 2024). Specifically, a mathematical model is an abstract description 

of a concrete system using mathematical concepts and language. The process of developing 

a mathematical model is termed mathematical modelling. Mathematical models are used in 

applied mathematics and in the natural sciences, such as physics, biology, earth science, and 

chemistry, as well as in engineering disciplines like computer science, industrial and 

management engineering. Beyond these, mathematical models also find application in non-

physical systems, such as the social sciences, including economics, psychology, sociology, 

and political science. Mathematical modelling describes a process and an object by use of the 

mathematical language (Giordano 2013). A process or an object is presented in a “pure form” 

in Mathematical Modelling when external perturbations disturbing the study are absent.  

Computer simulation is a natural continuation of the mathematical modelling. Computer 

simulation can be considered as a computer experiment which corresponds to an experiment 

in the real world (Law and Kelton, 2019). Such a treatment is rather related to numerical 

simulations. Symbolic simulations yield more than just an experiment. They can be considered 

as a transformation of a mathematical model by computer, since symbolic simulations keep 

parameters of the model in symbolic form that corresponds to a set of actual experiments 

(Buchberger 1988). One can obtain numerical results as in actual experiments only after 

substitutions of the symbolic parameters with the numerical data (Mityushev et al., 2018). In 

summary, simulation model is a mathematical representation of a real-world system or 

process that allows for the study of its behaviour over time. Unlike mathematical models, which 

often rely on analytical solutions to equations, simulation models are typically implemented 

using computer software to mimic the dynamic behaviour of the system through numerical 

simulations. 

A modelling assumption is a simplification or generalization made during the construction of 

a model to make it more manageable and solvable (Sterman 2000). These assumptions define 
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the scope and boundaries of the model, specify the behaviour of variables, and outline the 

relationships between different components of the system being studied (Law and Kelton, 

2019). Modelling assumptions are essential because they simplify complex systems: By 

reducing complexity, assumptions make it feasible to develop, analyse, and understand the 

model (Sergent, 2013). Also, they help in concentrating on the most significant factors 

affecting the system, ignoring less critical details (Pidd 2004). Furthermore, they enhance 

manageability by simplifying the computational feasibility, especially for complex models with 

numerous variables (Banks, 2005). Essentially, modelling assumptions are crucial elements 

that shape the construction and application of models (Borshchev,  2013). They enable 

simplification and focus but must be carefully chosen and regularly reviewed to ensure that 

they do not compromise the model's validity and reliability. However, every assumption 

introduces a limitation (Kleijnen, 1995). Understanding these limitations is crucial for correctly 

interpreting model results and for identifying the scenarios in which the model can be applied. 

Thus, by understanding and carefully considering modelling assumptions, model developers 

and users can create more accurate, reliable, and useful models. This process ensures that 

the models are both scientifically sound and practically applicable in real-world decision-

making (Robinson, 2014).  

2.2 METHODOLOGIES APPROACHES FOR MODELLING 

The methodological approach involving mathematical models and simulation in Operations 

Management is a sophisticated and vital aspect of modern industrial processes. Mathematical 

models are abstract representations of real-world systems using mathematical language and 

symbols to describe the relationships between variables. Simulations, on the other hand, are 

the techniques of imitating the operation of real-world processes or systems over time, often 

executed through computational algorithms. Together, these methods enable managers to 

analyse, predict, and optimize operational performance in a controlled and systematic manner. 

In the realm of operations management, mathematical modelling and simulation have become 

indispensable tools for tackling the complexities of modern manufacturing, supply chain, and 

service operations. These techniques allow organizations to capture the intricate dynamics 

and interdependencies within their operational processes, enabling them to make informed 

decisions and implement strategies that enhance efficiency, productivity, and profitability. 

Mathematical models in operations management can take various forms, such as linear 

programming, queuing theory, inventory models, and network optimization models. These 

models provide a quantitative framework for representing operational constraints, resource 

allocation, scheduling, and logistics challenges (Hillier and Lieberman 2021). By incorporating 

relevant variables, parameters, and objective functions, these models can be used to optimize 

decision-making processes, minimize costs, and maximize operational performance. 

Simulations, on the other hand, allow managers to experiment with different scenarios and 

evaluate the impact of various operational strategies without disrupting actual operations. 

Discrete event simulation (DES) and agent-based modelling (ABM) are two prominent 

simulation techniques widely used in operations management (Borshchev and Filippov, 2004; 

Banks et al., 2010). DES models the flow of entities (e.g., products, customers) through a 
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system, capturing the dynamics of queues, resource utilization, and process interactions. ABM 

simulates the behaviour and interactions of individual agents (e.g., machines, workers) within 

a system, enabling the study of emergent phenomena and complex adaptive systems. 

Recent advancements in computational power, data analytics, and machine learning have 

further enhanced the capabilities of mathematical modelling and simulation in operations 

management. Data-driven modelling approaches, such as machine learning-based demand 

forecasting and predictive maintenance, have gained traction, enabling more accurate and 

adaptive decision-making processes (Agrawal & Srikant, 2000; Susto et al., 2015). 

Moreover, the integration of mathematical models and simulations with real-time data streams 

and Internet of Things (IoT) technologies has opened up new avenues for dynamic 

optimization and real-time decision support systems. Digital twins, virtual representations of 

physical assets or processes, leverage mathematical models and simulations to monitor, 

analyse, and optimize operational performance in real-time (Tao et al., 2019). 

Furthermore, the field of simulation optimization has emerged as a powerful approach, 

combining mathematical optimization techniques with simulation models to identify optimal 

solutions for complex operational problems (Fu, 2015). Techniques such as metaheuristics, 

evolutionary algorithms, and response surface methodologies have been employed to 

efficiently search for optimal solutions within the vast solution spaces generated by simulations. 

One of the core challenges in applying these methodologies is the inherent complexity of 

operational systems. As highlighted by Hillier and Lieberman (2021), operational processes 

often involve numerous interconnected components and variables, making it difficult to 

develop models that are both accurate and computationally feasible. The complexity can lead 

to models that are either oversimplified, thus losing critical details, or overly detailed, making 

them computationally intractable. This necessitates a balance between model fidelity and 

computational efficiency to ensure practical applicability. 

Data quality is another crucial factor influencing the effectiveness of mathematical models and 

simulations. Operations management relies heavily on precise data to feed into these models. 

Inaccurate or incomplete data can significantly skew model outputs, leading to erroneous 

conclusions. According to Davenport and Harris (2017), ensuring high-quality data involves 

rigorous data collection, pre-processing, and validation steps. Data cleaning and 

transformation processes are essential to maintain the integrity and reliability of the inputs 

used in simulations. 

Computational efficiency is a critical concern in the deployment of mathematical models and 

simulations. High-fidelity models, while providing detailed and accurate insights, often demand 

substantial computational resources. This can be a limiting factor, especially for real-time 

decision-making scenarios. The work by Law and Kelton (2019) emphasizes the importance 

of developing efficient algorithms and optimization techniques to reduce computational loads, 

making it feasible to run complex simulations within reasonable timeframes. 
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The validation and verification of models are fundamental to ensuring their reliability and 

accuracy. Without rigorous validation, there is a risk that models may not accurately reflect 

real-world conditions, leading to suboptimal decisions. Robinson (2014) points out that 

validation involves comparing model outputs with actual system behaviour to ensure 

consistency and accuracy. Verification, on the other hand, ensures that the model is correctly 

implemented according to its specifications. Together, these processes build confidence in 

the model's predictive capabilities. 

Incorporating uncertainty and variability into models is another significant challenge. Real-

world operations are inherently uncertain and variable, influenced by numerous unpredictable 

factors. Models that fail to account for this stochastic nature can produce misleading results. 

Bertsimas and Freund (2020) discuss the importance of stochastic modelling techniques, 

which incorporate randomness and uncertainty into the models, thereby providing a more 

realistic representation of operational dynamics. 

Furthermore, user-friendly interfaces are essential to ensure that these sophisticated tools can 

be effectively utilized by practitioners who may not have advanced technical expertise. As 

suggested by Powell and Baker (2017), the design of intuitive interfaces and comprehensive 

training programs is crucial for enabling users to interact with models and simulations 

effectively, thereby enhancing their utility and impact. 

Interdisciplinary collaboration is also vital in the development and implementation of 

mathematical models and simulations. Operations managers, data scientists, and other 

stakeholders must work together to ensure that models are both theoretically sound and 

practically applicable. Cross-disciplinary collaboration fosters a holistic approach, integrating 

diverse perspectives and expertise to enhance model robustness and applicability. This 

collaborative approach is advocated by Silver, Pyke, and Thomas (2016), who emphasize the 

importance of leveraging collective expertise for successful model implementation. 

2.3 MODELLING TOOLS   

In the context of mathematical modelling and simulation in operations management, a 

modelling tool refers to a software application or programming environment designed to 

facilitate the development, implementation, and analysis of mathematical models and 

simulations. Modelling tools provide a user-friendly interface and a set of features that enable 

operations managers, analysts, and researchers to create, modify, and execute mathematical 

models and simulations without the need for extensive programming knowledge. 

Modelling tools play a crucial role in addressing these challenges and ensuring that the 

chosen methodologies are appropriate for the goals of the study. They are software 

applications designed to facilitate the creation, visualization, and management of various types 

of models used in software development, systems engineering, and other domains. These 

tools provide a structured and visual approach to representing complex systems, processes, 

data structures, and architectures. The concept of modelling tools revolves around the idea of 

abstracting and simplifying complex real-world systems or concepts into visual 
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representations or models. These models serve as a communication medium, enabling 

stakeholders to understand, analyse, and collaborate on the design and development of 

systems or processes.  Modelling tools offer a range of functionalities, including model building, 

data integration, simulation execution, visualization and animation, optimization and analysis, 

and experimentation and scenario analysis (Rossetti, 2015; Bapat & Sturrock, 2003). 

Some popular modelling tools used in operations management include: 

1. Simulation software: Arena (Kelton et al., 2017), AnyLogic (Borshchev, 2013), FlexSim 

(Nordgren, 2003), Vensim (Ventana Systems, 2018) and Simio (Sturrock & Pegden, 2010) 

are examples of dedicated simulation software packages that support various simulation 

paradigms, such as discrete event simulation, agent-based modelling, and system 

dynamics. 

 

2. Optimization solvers: CPLEX (IBM, 2009), Gurobi (Gurobi Optimization, 2022), and LINGO 

(Schrage, 2006) are optimization solvers that can handle linear programming, mixed-

integer programming, and other optimization problems commonly encountered in 

operations management. 

 

3. Spreadsheet-based tools: Excel and its add-ins like Solver (Fylstra et al., 1998), Risk 

Solver (Frontline Solvers, 2022), and @Risk (Palisade Corporation, 2022) provide a 

familiar environment for building and analysing mathematical models and simulations, 

particularly for smaller-scale problems. 

 

4. Programming languages and environments: Python (with libraries like PyOMO (Hart et al., 

2017), SimPy (Muller & Vignaux, 2003), and AnyLogistix (Borshchev, 2013)), MATLAB 

(Higham & Higham, 2016), and R (Venables & Smith, 2022) offer powerful programming 

environments for developing custom mathematical models and simulations, as well as 

integrating with other data analysis and visualization tools. 

Recent advancements in modelling tools have focused on integrating machine learning and 

artificial intelligence techniques for data-driven modelling and simulation. For instance, 

AnyLogic Cloud (Borshchev, 2021) incorporates machine learning capabilities for demand 

forecasting and predictive maintenance, while SimMine (SimMine, 2022) leverages deep 

learning for simulation model discovery and optimization. 

Furthermore, the emergence of cloud-based modelling and simulation platforms, such as 

AnyLogic Cloud and Simio Cloud (Sturrock, 2021), has enabled collaborative model 

development, scalable simulation execution, and remote access to modelling resources. 

In the field of simulation, tools such as ARENA, Simul8, Vensim, and AnyLogic offer 

comprehensive platforms for developing and running simulations, each with unique strengths 

suited to different aspects of operations management. ARENA, for instance, is well-suited for 

discrete-event simulation (DES), which is essential for modelling operations involving distinct 

events occurring at specific times. This capability makes ARENA particularly effective for 
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analysing manufacturing processes, production lines, and service systems where timing and 

sequencing of events are critical (Kelton et al., 2017). 

Simul8 also excels in discrete-event simulation and is known for its user-friendly interface and 

rapid model development capabilities. It is often used for scenarios requiring quick prototyping 

and iterative testing of operational strategies. As reported by Hall (2012), Simul8's visual 

approach to building models facilitates easier communication of complex processes and 

results to stakeholders who may not be familiar with simulation modelling. 

Vensim, on the other hand, specializes in system dynamics modelling, making it suitable for 

understanding and analysing the behaviour of complex systems over time. This tool is 

particularly useful for strategic planning and policy analysis, where the focus is on 

understanding the long-term impact of decisions and identifying leverage points within a 

system (Ventana Systems, 2018). Vensim's strength lies in its ability to model feedback loops, 

time delays, and non-linear relationships, which are common in complex organizational 

systems. 

AnyLogic offers a unique advantage by integrating multiple simulation methodologies, 

including discrete-event, agent-based, and system dynamics modelling. This multi-method 

capability allows for a more comprehensive representation of complex systems with various 

interacting components (Borshchev, 2013). For example, AnyLogic can model the flow of 

materials through a production system (DES), the behaviour of individual agents such as 

customers or employees (agent-based), and the broader systemic trends and feedback loops 

(system dynamics). This flexibility makes AnyLogic particularly valuable for large-scale, multi-

faceted studies such as optimizing supply chain efficiency, evaluating healthcare systems, or 

simulating urban development scenarios. 

The appropriateness of these tools depends on the specific goals of the study. For instance, 

if the objective is to optimize production schedules in a manufacturing environment, ARENA 

or Simul8 would be highly appropriate due to their robust DES capabilities. If the study aims 

to improve supply chain efficiency, AnyLogic's multi-method approach can capture the 

complex interactions between different supply chain components, providing a more holistic 

analysis. For strategic planning and long-term policy analysis, Vensim's system dynamics 

modelling can reveal insights into the broader systemic impacts of various decisions. 

Choosing the right tool is crucial as it ensures that the models can accurately represent the 

operational processes and deliver actionable insights. This choice significantly impacts the 

fidelity of the simulation, the relevance of the insights generated, and the overall effectiveness 

of the study. According to Banks et al. (2010), the choice of simulation software should align 

with the specific requirements of the study, including the nature of the system being modelled, 

the level of detail needed, and the expertise of the users. For instance, discrete-event 

simulation tools like ARENA and Simul8 are ideal for systems where the flow of events and 

processes can be distinctly identified and timed, such as in manufacturing or service 

operations (Kelton et al., 2017; Hall, 2012). These tools enable precise modelling of 

sequences and timings, which are critical for optimizing workflows and reducing bottlenecks. 

Thus, the choice of a modelling tool depends on factors such as the complexity of the problem, 
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the required level of customization, the available data sources, and the expertise of the users. 

Effective use of these tools can significantly enhance the decision-making capabilities of 

operations managers by providing insights into complex operational processes and enabling 

data-driven optimization strategies. 

Furthermore, the level of detail required in the model also dictates the choice of tool. Detailed 

models that capture fine-grained interactions and specific events benefit from discrete-event 

simulation tools, while broader system-level analyses that explore overall trends and patterns 

are better served by system dynamics models. The expertise of the users is another critical 

factor; user-friendly interfaces and intuitive design are essential for practitioners who may not 

have advanced technical skills. Tools like Simul8, known for their ease of use and visual 

modelling capabilities, can facilitate quicker adoption and more effective use by non-experts 

(Hall, 2012). 

In conclusion, the careful selection of modelling and simulation tools is paramount to the 

success of any operations management study. Aligning the tool with the study's requirements 

ensures that the models developed are both accurate and actionable, thereby providing 

reliable insights that drive better decision-making and operational improvements. This 

alignment not only enhances the credibility of the study's outcomes but also maximizes the 

practical benefits derived from simulation, leading to more informed strategies and optimized 

operations. 

3 MODELLING DOMAIN AND REQUIREMENTS  

3.1 MODELLING FEATURES  

In this section the set of modelling factors and assumptions that are necessary to create a 

Circular Supply Chain model is provided.  

Specifically, they will be divided into two different groups. The first group describes the 

Operational features, that characterize the linear production and processes. In other word, 

group 1 could exist in any type of SC, also in forward SCs, while group 2 defines the Circularity 

features. Thus, those features that characterize the Circular Supply Chain (CSC) archetype, 

the circular flows and R-imperatives. 

As discussed in the previous sections, modelling is a tool that enables understanding and 

decision-making of complex systems and processes, such as CSC, providing a flexible and 

scalable approach. Thus, in addition, for each operational/circular feature, the modelling factor 

that enable to create a model for a CSC is exposed, as summarized in Table 1. 

3.1.1 Group 1: Operational features  

Supply Chain structure. It refers to the configuration of interconnected entities involved in a 

SC in a supplier-buyer relationship, from the extraction of raw material to the final customer. 
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It can be Complex or Simple depending on if it includes several actors or few actors. It can 

also be Global or Local, according to the geographical distribution of SC’s members. In terms 

of modelling actors: 

• Number of Nodes. The number of echelons that compose a SC need to be considered 

since it is the base of modelling CSCs. Moreover, since in CSC there are also 

interconnection between different SC, also the number of SC need to be considered. Thus, 

the number of nodes informs on the total number of actors that characterize the CSC 

model. 

• Transportation lead time. It depends on the distance between the different nodes. If it is 

Global SC transportation led time will be higher compared if the SC is Local. In the latter 

case, since short distances need to be covered, thus, the model will present a short 

transportation lead time. 

Market demand. It refers to the trend of market demand governed by the consumers. The 

demand of the main product that the CSC is subject to. Depending on the product, it can be 

seasonal or steady or influenced by the presence of secondary markets or leasing. Thus, if 

the market demand follows a normal distribution, in terms of modelling factors: 

• Mean demand. It governs the demand volume, it can be high or low and it can vary over 

time when for instance mechanisms such as the “refuse, reduce, and rethink” are diffused. 

Indeed, for instance in this case the demand volume decrease. 

• Demand variance. It informs on the variability of the market demand 

Collaboration: It refers to the cooperation among the different actors within the SC including 

information and data sharing, also concerning circularity; in other works, if a collaborative 

approach and data sharing is enabled between different SC actors. 

• Information sharing. There is information transparency concerning incoming demand 

values or lead times, but also circular factors, for example the number of EOL returns or 

the amount of waste exchanged in industrial symbiosis settings. 

Efficiency of forward process: It refers to the efficiency of the linear (no circular) production 

processes. Since managers could decide to invest more in implementing new circular 

processes or, on the opposite site, to improve their existing one, this entails high efficiency for 

the forward production. But at the same time, if regulatory laws force circular and sustainable 

production, linear processes are constrained. In terms of modelling factors: 

• Variability of lead time. It may be that innovative technologies are implemented in the linear 

production to ensure and optimized production in a timely manner. It reflects in a low 

variability in the production lead times. On the contrary, if circular production is prioritized, 

and the technologies/machines used in the linear production are less effective than those 

used in circular ones, the variability of lead time could be lower. 

• Maximum forward production rate. If the production process is governed by regulation for 

raw material extraction/use (weighted to recycled material use) a limit on the linear 

production needs to be set. 
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Environmental constraints: CSCs can be subject to regulations that limits their production 

rates but also their environmental impacts.  

• Constraints on emissions. A maximum of emissions is imposed in the production process 

of a SC. 

• Constraints on waste/by-products generations. When waste/by-product in not upcycled, 

thus, there are no circular practices that generate value from them, still regulations could 

force the SC to limit their production. 

3.1.2 Group 2: Circularity features  

Degree of circularity. It refers to the percentage of end-of-life products that are reinsert in 

the SC after their lifecycle with consumers.  

• Return rate. It refers to the percentage of market sales that are reinserted in the CSC. 

Indeed, after their use, only a rate of used goods is return by the customer. 

• Coefficient of variation of the return rate. It refers to the variability over time of the 

percentage of end-of-life products that are circulated. 

End-of-life dynamics. It refers to the dynamics of reverse circular loops of used products. 

Specifically, since the used products can be reinserted in the original SC or in another SC, 

from a modelling perspective we distinguish: 

• Closed-loops. When closed-loops are implemented, the end-of-life products are returned 

in the origin SC. Here, they are remanufactured/reused/repaired to serve their original 

purpose, thus, to satisfy the same marked demand. 

• Open-loops. When open-loops are implemented, instead end-of-life products are sent to 

a different SC than their main one. Indeed, here, once treated, they will satisfy another 

final customer demand and serve a new purpose. 

End-of-life cycles. It refers to the nature of the reverse process and the SC level where end-

of-life products are reinserted. Indeed, depending on the R-imperative 

(reuse/remanufacture/recycle) different SC members can be involved in the loops. 

• Returns share. Short loops when end-of-life products are subject to short loops/cycles and 

reverse processes such as Resell, Reuse, Repair. On the contrary, long loops when end-

of-life products are subject to long loops/cycles and reverse processes such as Recycle, 

Remanufacture, Repurpose. 

Industrial symbiosis. In industrial symbiosis the waste or by-products generated in the 

production process (they are not end-of-life waste) by one industry are utilized as inputs or 

resources by another industry instead of raw virgin material. From a modelling perspective: 

• Waste rates. Between two nodes of the same or two different SCs, there can be a 

symbiotic exchange of waste/by-product, that is accounted by the waste rate. Here, the 

exchange can be bi-directional and it can involve any type of waste/by-product that is 
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created in the production process of a SC member that is useless for itself, but it represents 

a source of value for another production process. 

Lifecycle of the product. It reflects the products life duration. Depending on the circular 

scenario, on the different strategies that are implemented in the CSC and on the product itself, 

the product life duration can consist of some days, e.g. agri-food sector, or several years, e.g. 

electronics or automotive sectors. This is an important issue when it comes to model and 

simulation for CSC: 

• Consumption lead time. It refers to the time lag between the sale of the products and their 

end-of-life/collection, thus, is the time products are held by the customers. 

Quality of end-of-life products. It refers to the quality of the end-of-life returned products 

before being treated in a reverse process. Products returned at the end of their life cycle need 

to be in a condition that allows for effective repair or recycling. 

• Mean of reverse lead time. It expresses the quality of end-of-life products in a circular 

supply chain because it provides insight into the average time it takes for products to be 

returned, processed, and reintegrated into the supply chain after their initial use. For 

instance, shorter mean reverse lead time suggests that products are returned in relatively 

good condition, minimizing the need for extensive repairs or refurbishment. 

Quality of the treated products. It refers to the quality of the end-of-life returned products 

after being treated in a reverse process. 

• Demand from secondary market. Recovered products with the same quality of new ones, 

thus as-good-as-new, can be used to satisfy the original market demand. Thus, products 

generated using raw virgin material or generated using reprocessed material are identical. 

On the contrary, there can be recovered products with lower quality are sell at a lower 

price and in secondary markets. Thus, they are subject to another final customer demand. 

Efficiency of reverse process. It refers to the efficiency of the technology used in the reverse 

process. As well as for the efficiency of forward process (above) it can be high or low 

depending on the technologies used. 

• Coefficient of variation of the reverse lead time. This parameter indicates how efficiently a 

SC node reverse process is operating. An efficient reverse process has consistent and 

predictable lead times, meaning less variability in the time it takes to return and process 

used products. Thus, a low coefficient of variation indicates that the reverse lead times are 

consistent and there is little variability thank to reliable performance when there are fewer 

disruptions.  

Replenishment policies. It refers to the replenishment policy that governs the reverse flows 

in CSCs. Since the volume of waste that is created in a productions process, or the end-of-life 

waste are dependent on the customer demand, they are subject to the demand sores of 

variability plus the variability of the circular process plus the life cycle of the product variability, 
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Thus, to properly manage them in their operations, SC members need a push or pull policy to 

govern the volume of the circular flows. 

• Cycles policy. The two main policy that can govern the loops are the push and pull policies. 

In a push policy, end-of-life waste and/or by-products are always prioritized compared to 

the and once they are collected, they became available for their buyer. In a pull policy, 

end-of-life waste and/or by-products are managed through ordering policies as for the 

linear production and their buyer can chose to replenish in a linear o circular manner.  

 

Feature Modelling factor Notation 

Supply Chain structure Number of Nodes/echelons N 

 Transportation lead time LTi  

Market demand Mean demand µD 

 Demand variance σ2
D 

Collaboration Information sharing ε 

Efficiency of forward process Variability of lead time cv Li 

 Maximum forward production rates Smax 

Environmental constraints Constraints on emissions. Smax 

 Constraints waste/by-product generation  

Degree of circularity rate Mean return αi 

 Coefficient of variation of the return rate cv α 

End-of-life dynamics Closed-loop or Open-loop  

End-of-life cycles R-imperative  

Industrial symbiosis Waste rates ωi 

Lifecycle of the product Consumption lead time Lc 

Quality of end-of-life products Mean of reverse lead time µLRi 

Quality of the treated products Demand from secondary market  

Efficiency of reverse process Coefficient of variation of the reverse lead time cv LRi 

Replenishment policies Cycles policy  

   

Table 1. Modelling for Circular Supply Chains 
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To conclude, the set of modelling factors above described are those that enable to create a 

model for a CSC. Indeed, combining their values it is possible to create a specific SC 

archetype, as well as explore possible to-be scenarios when tuned.  

3.2 FUTURE SCENARIOS  

Here, the four plausible future circular scenarios (to be modelled) that have been defined in 

D1.3 are characterized also by the above-mentioned modelling features. Thus, for each 

plausible future circular scenario, the operational features and the circular features are defined. 

Specifically, the results have been obtained through an external validation that consisted of 

the following steps.  

1. Modelling assumptions definition. Here, the modelling feature values has been 

assigned based on the scenario description in D1.3. 

2. Internal workshop with the ExPliCit project consortium. During this workshop that took 

please on the 19th of February, the modelling factors have been detailed explained in 

order to give to the participant all the information to properly fill a scenario-based form 

that was given to them immediately after the workshop. 

3. Diffusion of an excel file (see Figure 1) where for each future scenario the set of 

modelling factors could be defined. The scenario-based file has been filled by the 

participants of the workshop and also by some other members of the project.  

4. Validation of the results. The results obtained has been used to validate the factors 

assignment proposed. 

Finally, based on selections by the consortium, the values for each modelling factor in each 

scenario has been obtained as summarized in the following paragraph.  

For the sake of simplicity, for each Scenario we present only the overview, please refer to the 

deliverable “D1.3 Tailored Scenario Exploration System for Circular Economy Scenarios” for 

further information. Moreover, based on the overview one illustrative table for each scenario 

in presented to provide some examples of the modelling assumptions derivation.  
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Figure 1. Excel form 

 

Scenario 1: Centralized circularity uptake (Unrestricted growth + Centralised governance). 

Characterized by concentrated economic activity in large private and public entities as well as 

unrestricted growth under top-down governance 

Description: “In this scenario, the state and large corporations are in a coalition to promote 

circular innovations and technical fixes to linear production and consumption systems. 

Through these fixes they aim to increase economic growth, while trying at the same time to 

decouple economic growth from environmental impact, but only from specific elements (GHG 

emissions mainly). In this scenario, most decisions are made at the large-scale level since the 

economic activity is very concentrated in few actors: the state and large corporations. These 

few actors control specific strategic resources (e.g. critical raw materials for green 

technologies, Artificial Intelligence powered infrastructure to fuel global logistics flows) and 

govern and plan products and material flows. This also sparks some geopolitical conflicts 

among different countries that defend the interests of their national corporations. Because of 

the influence of large corporations, governments do not put in place hard restrictions on fossil 

fuels or polluting products, just some compensations for some externalities (carbon cap and 

trade, Extended Producer Responsibility programs and right to repair regulations). Also, 

governments, and not corporations, make the necessary large investments for the recycling 

and energy recovery infrastructure. The type of CE promoted preserves the status quo within 

the economic system and is mainly based on improving efficiency through massive recycling 

and energy recovery plants and using recycled materials instead of primary ones. 

Corporations use AI bots and personalised advertisements to push citizens to consume ever 

growing quantities of environmentally friendly and circular commodities for newly created 
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needs. Global supply chains deliver products very fast and are constantly optimised by very 

advanced technological infrastructure, which deals also with recovering them at the end of 

their short life to fuel “circular” but unsustainable supply chains. There is no control on planned 

obsolescence, which is actually used as a tool to fuel economic growth. Despite GHG 

emissions being partially decoupled from economic growth, this does not happen for most of 

the other impacts and ecological boundaries. As a consequence, there are worsening effects 

of the ecological crises, which put human existence at risk.” 

 

Feature Value 

Supply Chain structure Global 

 Complex 

Market demand High volume 

 High variability 

Collaboration No 

Efficiency of forward process High  

 Constrained 

Environmental constraints Not on emissions 

 Not on waste/by-products 

Degree of circularity rate Low 

 Increase over time 

End-of-life dynamics External 

End-of-life cycles Short 

Industrial symbiosis Yes 

Lifecycle of the product Short 

Quality of end-of-life products Low 

Quality of the treated products Low 

Efficiency of reverse process Low 

Replenishment policies Pull 

  

Table 2. Modelling features for Scenario 1 
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Scenario aspect Modelling assumption 

promote circular innovations 
Several loops (open and 

closed) 

improving material efficiency  Hight technical coefficients 

energy recovery plants  
Waste energy rates 

massive recycling High return rates 

newly created needs 

Different market demand 

no control on planned obsolescence 

No regulations 

Global supply chains 
Global network 

their short life Short consumption lead 

time 

very fast Short production lead times 

constantly optimized 
Increasing efficiency rates 

 

Table 3. Scenario aspect-modelling assumptions for Scenario 1. 

 

Scenario 2: Planned Circular loops (Limits to growth + Centralized governance). 

Characterized by concentrated economic activity in large private and public entities as well as 

strict limits to growth under top-down governance; 
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Description: “In this scenario, a collaboration between states, major corporations, and the UN 

leads to the establishment of limits to growth society. The system is centred around throughput 

rights, and aims to ensure human activities remain within safe ecological limits, and also that 

no one is left behind. This transformation occurs gradually and employs an authoritarian 

approach, placing ecological boundaries and equity at the forefront over private profits. Over 

time, traditional markets give way to a more technocratic and scientifically guided economic 

framework focused on socially desirable throughput (authoritarian environmentalism). The 

Circular Economy is an integral part of this paradigm shift, prompting a radical rethinking of 

production and consumption. Product-as-a-service models and the sharing economy 

proliferate. Products reach their end of life within local spheres, under the control of 

decentralised divisions of large corporations. This localised control contributes to resource 

conservation at heightened levels. Large corporations retain ownership of products while 

leasing them to consumers, resulting in earnings through user fees. Citizens do not own 

smartphones, computers, cars, and appliances and develop a new form of dependence on 

these large corporations that provide these essential items. Strategic materials, pivotal to 

these products, evolve into a novel form of capital for these corporations and nations. As a 

consequence of these evolving strategies, supply chains undergo a transformation, shifting 

towards more localised structures due to the escalating costs associated with global supply 

chains. A notable feature of this system is the imposition of high taxes. These taxes serve a 

dual purpose: firstly, to finance a universal basic income, and secondly, to guide consumers 

towards non-detrimental products and services. The outcome is a society that is less free, 

more constrained but more equitable” 

 

Feature Value 

Supply Chain structure Global 

 Simple 

Market demand High volume 

 Low variability 

Collaboration Yes 

Efficiency of forward process High  

 Constrained 

Environmental constraints Yes, on emissions 

 Yes, on waste/by-products 

Degree of circularity rate High 

 Constant over time 
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End-of-life dynamics Internal  

End-of-life cycles Long 

Industrial symbiosis Yes 

Lifecycle of the product Long 

Quality of end-of-life products High 

Quality of the treated products High 

Efficiency of reverse process High 

Replenishment policies Push 

  

Table 4. Modelling features for Scenario 2. 

 

Scenario aspect Modelling assumption 

ecological boundaries over private 

profits 

Emission restrictions 

guide consumers towards non-

detrimental products and services 

Large consumption lead 

times 

product-as-a-service  
Short loops 

High return rate 

sharing  Collaboration 

more localized SCs 

Few nodes 

Short Lead Times 

  

Table 5. Scenario aspect-modelling assumptions for Scenario 2. 

 

Scenario 3: Decentralized circularity uptake (Limits to growth + Decentralized governance). 

Characterized by strict limits to growth in a highly dispersed economy, structured and 

governed from the bottom up.. 
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Description: “In this scenario, although environmental limits are recognised, there are no strict 

constraints imposed on throughput or ecologically responsible restrictions on economic 

activities. The state opts for mild regulations aimed at altering demand through measures like 

subsidies and eco-taxes, and hopes companies develop cleaner and circular innovations and 

technologies. Circular Economy is interpreted as a system that retains essential materials and 

energy within their economic domain and is motivated by concerns regarding supply security 

and social efficiency, which considers the costs of waste and the direct impacts of pollution on 

various stakeholders. Societies are increasingly resisting the dominance of large corporations, 

which have benefited an exaggerated share of economic benefits and profits within the 

financial and economic sectors, also managing to circumvent taxes for an extended period by 

utilizing offshore tax havens. Social movements claim back the ownership of personal data 

tech companies have been using to accrue their power. After implementing targeted economic 

measures aimed at re-establishing local competition and countering the dominance of large 

corporations, economic activity becomes significantly more diffused throughout society and 

decentralised within various organisations. This shift away from large corporations’ hegemony 

not only restores more market freedom but also reinvigorates the overall economy's capacity 

for innovation. Despite facing significant organisational transaction costs, small-scale actors 

play a pivotal role in driving change. The processes of commodification continue to explore 

fresh avenues for economic growth. Circular business models become increasingly prevalent, 

often facilitated by government incentives. However, smaller organisations often lack the 

economies of scale enjoyed by larger counterparts, resulting in reduced efficiency. 

Coordination challenges persist, especially for larger circular initiatives. In the long term, this 

system struggles to prevent environmental degradation, which adversely affects overall 

human well-being. Many negative externalities remain unaddressed, as inexpensive 

transportation encourages long, global supply chains involving numerous actors.” 

 

Feature Value 

Supply Chain structure Local 

 Complex 

Market demand Low volume 

 High variability 

Collaboration No 

Efficiency of forward process High Efficiency 

 Constrained 

Environmental constraints Not on emissions 

 Not on waste/by-products 
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Degree of circularity rate Low 

 Increase over time 

End-of-life dynamics External 

End-of-life cycles Short 

Industrial symbiosis No 

Lifecycle of the product Short 

Quality of end-of-life products Low 

Quality of the treated products Low 

Efficiency of reverse process High 

Replenishment policies Pull 

  

Table 6. Modelling features for Scenario 3. 

 

Scenario aspect Modelling assumption 

subsidies and eco-taxes to alter 

demand 

Limited emissions (e.g. 

shorter lead times) 

claim back the ownership of 

personal data [...] coordination 

challenges persist 

No Information Sharing 

long, global supply chains involving 

numerous actor Complex SC structure 

 

Table 7. Scenario aspect-modelling assumptions for Scenario 3. 

 

Scenario 4: (Unrestricted growth + Decentralized governance). Characterized by 

unrestricted growth under a very disperse economy structured and governed bottom-up. 

Description: “In this scenario, citizens become increasingly aware that growing consumption 
is the source of many current and future problems and does not lead to happiness. 
Consequently, they demand for the establishment of a sufficiency-based system that ensures 
economic activity remains within the boundaries of the ecosystem while providing sufficient 
living conditions for all. GDP ceases to be a measure of progress, initiating a reverse 
commodification process aimed at fostering more convivial societies. The economic activity is 
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very dispersed, and the agents of change are low-scale actors and new local communities’ 
autonomous organisations that emerge and are attentive to levels of sufficiency and ecological 
and social respect. These organisations autonomously decide what to produce and use 
circularity as a tool to lead to sufficiency, where “refuse, reduce, and rethink” strategies are 
prioritised over recycling strategies. Local jurisdictions self-organise and self-impose a 
maximum resource usage (for every limited resource) through a fair share calculation 
supported by scientists and youth organisations. Also, Circularity is not only understood in 
energy-material terms, as it includes biogeochemical cycles in connection to economic-based 
cycles, as well as care cycles (people caring among them and valuing care in society) or power 
cycles (through the distribution of power, i.e. the committee) and wealth, income and capital 
cycles. Supply chains are shortened and within a proximate range to the consumption 
locations. Production systems in the long term adapt to the available resources nearby. The 
loops are established from the micro and, especially, the meso level, which implies greater 
self-structuring needs (figuring out how to identify circularity opportunities, how to build 
functional agreements, how to share resources and with whom, how to reach agreements and 
enforce them). After some initial difficulties, during which coordination challenges cause waste 
and unemployment, there is a prevalent trend toward federalism and democratic practices, 
leading to the proliferation of models and alliances rather than hierarchical scaling-up 
organisations. These developments emphasise collaborative efforts over market-driven 
transactions, shaping a transformative landscape rooted in sufficiency and ecological harmony. 
Some CE committees (meso-level governance structures) assume responsibility for these 
functions at regional levels. 
 
 

Feature Value 

Supply Chain structure Global 

 Complex 

Market demand Low volume 

 Low variability 

Collaboration Yes 

Efficiency of forward process Low 

 Constrained 

Environmental constraints Yes, on emissions 

 Yes, on waste/by-products 

Degree of circularity rate High 

 Increase over time 

End-of-life dynamics Internal & External 

End-of-life cycles Long 
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Industrial symbiosis Yes 

Lifecycle of the product Long 

Quality of end-of-life products High 

Quality of the treated products High 

Efficiency of reverse process Low 

Replenishment policies Push 

  

Table 8. Modelling features for Scenario 4. 

 

Scenario aspect Modelling assumption 

supply chains are shortened Few SC Nodes 

coordinating production, prices at 

regional levels 

Enabled information sharing 

maximum resource usage Supply constraints  

circularity is understood in wider 

terms Closed-loops, open-loops and 

symbiosis 

 

Table 9. Scenario aspect-modelling assumptions for Scenario 4. 

 

3.3 INDICATORS  

In this section a set of possible Key Performance Indicators (KPI) for circular supply chains 
are expose. Indeed, even if it not the main objective of this deliverable (a more detailed 

analysis of KPIs will be carried out in D2.2 Performance evaluation framework) they serve as 
an example of performance evaluation when modelling CSCs. Since sustainability consists in 
the intersection of three different dimensions that are the economic, environmental, and social 

dimensions, as defined by the triple bottom line, it is important to consider all of them when 
evaluating the performance of a CSC.  

Table 10 presents a set of possible KPIs. 
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Name Dimension  

Waste generation/reduction 

External input requirement/reduction 

Emissions 

f(environmental, economic) 

f(environmental, economic) 

f(environment) 

Inventory cover/Backlog 

Fill rate/Service level 

Dynamic behaviour 

f(economic) 

f(economic) 

f(economic) 

 

Table 10. Key performance indicators 

3.4 MODELLING REQUIREMENTS  

Based on the scenarios’ definition in D1.3 and on the modelling domain exposed in the 

previous section, the requirements for a CSC model are set. This with the aim of properly 

selecting the modelling methodology. 

Dynamic. It must be able to capture the dynamic aspects of the SC, as it is well-known that, 

in order to adequately forecast the performance of a SC, the dynamic effects should be 

accounted for. Therefore, the time variable is a key element in the models.  

Flexibility. It must be able to model very different SC structures and policies, as the scenarios 

described vary substantially, not only in the number of elements and in the operation, but also 

in how these elements interact among them. Therefore, in order to avoid developing scenario-

specific models from scratch, the modelling methodology should be able to allow a high degree 

of re-use of the models. This would not only reduce the required modelling workload, but also 

would allow fairer comparisons among the different scenarios.   

Multiple granularity levels. Some of the features/indicators described in the scenarios are 

systemic, whereas others are at company level or SC level. Furthermore, modelling possible 

CSCs require the specification of a number of detailed features (such as their processing 

capacity or storage capacity, lead/treatment times, thus, operational and circularity features) 

that greatly constraint the behaviour of the system. Consequently, the modelling methodology 

should be able to incorporate these aspects.   

Multi-range. Some of the indicators described in Section 3.3. refer to the short term, whereas 

others are more long-term oriented, or both. 

Bottom-up and Top-down approaches. The modelling methodology must handle both 

approaches, as some scenarios are clearly bottom-up while others are top-down.  
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Complexity. Some of the future circular scenarios described may entail many heterogeneous 

entities with complex, non-linear relationships among them (possibly including a non-rational 

behaviour by some of them). Therefore, the modelling methodology must be able to capture 

these complexities.  

Structural and functional optimization capabilities. The four scenarios foresee different 

forms of optimization: while the modernist SC points to a (SC-wise) optimization via 

coordination among partners (rather a functional optimization, i.e. an optimization of its 

performance), the Planned circularity scenario envisions a centralized allocation of the 

resources across the system, which possibly entails a sort of centralized (i.e. ‘optimized’) 

system design (rather a structural optimization, i.e. an optimization of the structure of the 

system). While both point out to optimization, from the modelling viewpoint it is necessary to 

distinguish between a centralized SC-design (which is achieved by a centralized matching of 

the supply and the demand), and the SC-level coordination (which is achieved via operation 

on an existing network). No single modelling technique can easily cope with such diverse 

features, so probably a combination of techniques must be sought.   

4 MODELLING METHODOLOGIES  

4.1 METHODS FOR SUPPLY CHAIN DYNAMICS  

Modelling SC dynamics have been approached by different methodologies in the past years. 

Each modelling methodology is devoted to capture the dynamic behaviour of the SC, but they 

have different benefits and drawbacks in terms of the outcome they provide. Therefore, the 

adopted modelling method is mainly related to the research objective. 

Different classifications of these methods have been proposed by relevant authors in the field. 

In the following it follows a summary of the main modelling methodologies adopted for 

researching the SC dynamics. 

Operational Research theory: The problem is expressed as a difference equation, with some 

parameter variables. The solution sought is one that explicitly minimises a cost function (or a 

surrogate), for an assumed set of operating conditions. The dynamic performance is implied 

by the mathematical solution to the problem (Geary et al. 2006). OR theory comprises a 

disparate collection of mathematical techniques, such as linear programming, queuing theory, 

Markov chains and dynamic programming. Although not strictly modelling techniques, they 

are very commonly used in industry (Riddals et al. 2000). 

Analytical models: these models describe the behaviour of the system using a number of 

formulae, so the variables of interest in the system may be expressed as a closed function of 

a series of input parameters. This modelling approach allows quantifying the effect of the input 

parameters in the variables of interest as well as deriving the values of these parameters to 

optimise the variables of interest. Their main drawback is the difficulty to obtain these closed 
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formulae, which sometimes require the formulation of simplifying hypotheses that may restrict 

their range of application (Framinan 2022). 

Control theory: The problem is expressed in the frequency domain. Using an assumed 

control law, the solution is obtained by shaping the system frequency response to suit the 

needs of the user. The dynamic performance is explicit from inspecting this response, whereas 

the cost performance is implicit (Geary et al. 2006). Control Theory may assume either 

continuous or discrete time. The approach is generally based on linear systems of transfer 

functions. A transfer function relates the output of a system to the input of the system in 

frequency space. The transformation simplifies the calculations considerably, which otherwise 

would have been complex if executed in the time domain. In order to derive the final solution 

in the time domain, the solution is converted back from the frequency into the time domain 

(Holweg and Disney 2005). 

Simulation models: These models essentially replicate in the computer the sequence of 

events followed by the real system that it is intended to model, either as a whole (discrete-

event or continuous models) or the behaviour of each one of the individuals or agents in the 

system, as well as their interactions (agent-based simulation models). Simulation models can 

be enormously rich as they can capture very complex behaviours, but, however, they are not, 

in principle, well suited for optimising the variables of interest (Framinan 2022). 

• Continuous time approach: The continuous time models are based on the notion 

that one observes all states of the system continuously (Holweg and Disney, 2005). 

The system must be considered at an aggregate level, in which individual entities in 

the system (products) are not considered. Rather, they are aggregated into levels and 

flow rates. Consequently, these methods are not suited to production processes in 

which each individual entity has an impact on the fundamental state of the system 

(Riddals et al. 2000). Key approaches include differential equations, often 

implemented through simulation software like VenSim or iThink. 

 

• Discrete time approach: Discrete time approaches assume that time happens at 

discrete intervals of time. The key implication for the mathematical computation of 

discrete time systems is that one needs a firm sequence of events (Holweg and Disney, 

2005). This approach comprises jobs and resources. Jobs, which, for the majority of 

applications, are physical entities, travel from resource to resource where their onward 

progress through the system is determined. The emergence of the discrete time 

simulation approach was engendered by the deficiencies of differential equation 

approaches to the solution of even simple problems (Riddals et al. 2006). A major 

drawback of this approach is the lack of a succinct descriptive language for their 

formulation. Consequently, the discrete time simulation approach has been primarily 

associated with `black box’ approaches through a variety of different software, like 

Arena or Anylogic. 

 

• Multi-agent approach: Multi-agent simulation have the capacity to consider the 

interactions between large numbers of heterogeneous firms (Hearnshaw and Wilson, 

2013). This approach assumes that the system is of high complexity, and thus it is very 
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difficult (or even impossible) to understand the system as a whole. Instead, the 

modeller can focus on individual elements of the system, and the global behaviour, 

that cannot be predicted in advance, emerges from their interactions, i.e. a bottom-up 

approach (Nilsson and Darley, 2006). The adoption of a multi-agent approach has 

several additional benefits, such as an increased modelling realism (e.g., individual 

agents can be comparable to machines, vehicles, products, or groups of such, found 

in a real life context), heterogeneity (e.g., there is no need to aggregate different agents’ 

behaviours into average variables), bounded rationality (e.g., agents have local 

information, having their own goals and policies), scalability, and flexibility (Dominguez 

and Cannella, 2020). 

4.2 METHODS FOR CIRCULAR ECONOMY 

A recent review by Demartini et al. (2021) surveys the scientific literature with the aim of 

identifying and the most used modelling approaches for circular economy and 

sustainability studies. From the 43 relevant works that were in-depth analysed, the following 

modelling approaches were identified: Agent Based Modelling (ABM) with 15 publications, 

followed by Input – Output model (IOM) with 6 publications, Lifecycle Assessment (LCA), 

Material Flow Analysis (MFA), Network Analysis (NA), Mixed Integer Linear Programming 

(MILP) with 4 publications respectively, and DEMATEL, Ecological network analysis (ENA), 

and System Dynamics (SD) with 2 publications, respectively. The following is an overview of 

each modelling approach. 

Agent-Based Modelling. ABM has gained significant popularity across various disciplines in 

recent years. ABM provides a framework to describe the behaviours of complex systems 

through the interactions of individual agents. These agents are autonomous, heterogeneous, 

and capable of communication and cooperation (Castro et al., 2020). The primary advantage 

of adopting ABM in an information systems (IS) network lies in its ability to elucidate learning 

processes and complex macrostructures by examining the interactions among individual 

agents. However, it is important to note that ABM is highly path-dependent, requiring extensive 

sets of parameters and data to accurately describe agent behaviours. Additionally, validation 

methods can be challenging due to the complexity involved in aligning simulations with real-

world data (Pasqualino and Jones, 2020). 

Input–Output Model. The IOM is a top-down approach designed to track transactions 

between activities, measured in monetary units, and extend them to the environmental level 

in terms of greenhouse gas (GHG) emissions (environmental extended input–output analysis) 

(Yazan et al., 2016). IOM is frequently used to analyse carbon footprints by accounting for 

both direct and indirect flows. It is often combined with other modelling methodologies to 

address dynamic problems (Pollitt et al., 2015). A common combination is IOM and LCA, 

which evaluates IS by considering different levels of analysis: LCA focuses on micro entities, 

while IOM addresses macro entities (Fang et al., 2017). IOM typically operates under three 

key assumptions: (i) linearity between inputs and outputs, (ii) continuity of system behaviour 

into the future, and (iii) instantaneous adjustment of productive factors to achieve production 

(Pasqualino and Jones, 2020). Consequently, its application is often limited to short-term 

evaluations. The primary weakness of IOM lies in the vast amounts of data required to create 
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the input–output table. Inaccuracies can occur if this data is not precise or if it includes varying 

degrees of aggregation (Mattila et al., 2010). 

Life Cycle Assessment. LCA is a comprehensive tool used to quantify the amounts of 

resources, materials, and energy consumed, as well as the environmental impacts generated, 

throughout a product's life cycle—from raw material extraction to its end of life (Finnveden et 

al., 2009). LCA is frequently integrated with other methodologies such as DES, SD, and IOM 

(Löfgren and Tillman, 2011; Fang et al., 2017; Mattila et al., 2010). This integration allows for 

the assessment of impacts on both micro entities (via LCA) and macro entities (via DES, SD, 

and IOM), providing a holistic view of environmental sustainability. 

Material Flow Analysis. Material Flow Analysis (MFA) is an analytical method designed to 

quantify the stocks and flows of materials and energy, aiming to assess environmental 

sustainability through various environmental indicators (Sendra et al., 2007). MFA is grounded 

in the concept of "mass conservation" and employs input/output flows that encompass both 

material and economic data. It is commonly used to evaluate the environmental impact at the 

macro level, such as for countries and regions, but is less frequently applied to micro entities 

like individual products and processes, for which LCA is generally preferred. The main 

limitations of MFA include its lack of a life cycle perspective and its inability to fully reflect 

ecosystem impacts (Sun et al., 2017). When applying MFA to industrial symbiosis (IS), specific 

considerations need to be addressed, as highlighted by Sendra et al. (2007): 1. The integration 

of MFA with energy and water flow analysis is necessary; 2. Indirect flows associated with 

companies should be included; 3. Evaluations should encompass both subsystems (individual 

companies) and the entire network. 

Network Analysis. NA is a method used to evaluate the structural and functional 

characteristics of systems by examining the stock and flow of resources among entities, 

thereby revealing the underlying network patterns (Szyrmer and Ulanowicz, 1987). In the 

context of IS, NA employs metrics such as density, centrality, and connectivity to analyse the 

network structure and understand the complexity of relationships between companies (Zhang 

et al., 2015a,b; Chopra and Khanna, 2014). NA is also valuable for identifying the functional 

properties of the network, visually depicting relationships (social networks), quantifying 

economic and environmental interactions, and defining system boundaries (Zhang et al., 

2015a,b). 

Mixed Integer Linear Programming. MILP involves optimization problems where some 

variables are constrained to be integers while others can be non-integers. MILP is widely used 

in industrial applications such as production planning and scheduling. In IS networks, MILP 

can be employed to compare different design schemes and processes, as well as to identify 

potential improvements in the network structure (Wolf and Karlsson, 2008). 

Decision Making Trial and Evaluation Laboratory. DEMATEL is an effective method for 

identifying cause-and-effect chain components in complex systems. It evaluates 

interdependent relationships among factors, identifying critical ones through a visual structural 

model. In IS, DEMATEL generates a cause-and-effect map that shows the impact of each 

company or factor on others (Lin, 2013). These results can be used to assess the primary 

causal factors that significantly affect the network. 
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Ecological Network Analysis. ENA tracks the flow of energy and materials from inputs to 

outputs within a network, analysing the system's structure and function. Applying ENA to IS 

helps capture indirect interactions, providing deeper insights into the functional and structural 

properties of the system through ecological flows (Wu et al., 2019). 

System Dynamics. SD is an approach to understanding the nonlinear behaviour of complex 

systems over time by utilizing stocks, flows, and feedback loops. Forrester (1970) outlined key 

characteristics of SD: (i) system boundaries, (ii) reinforcing and balancing feedback loops, (iii) 

stocks, which are accumulations within the feedback loops, and (iv) flows, which are the rates 

of change. SD aims to understand the generation of dynamic changes and to develop 

strategies and policies to improve system performance (Cui et al., 2018). It traces patterns of 

system behaviour through feedback structures at an aggregate level over time, making it a 

suitable method for IS as it captures causal processes and feedback loops (Morales and 

Diemer, 2019). 

All these methods have advantages, but also have their own limitations in order to capture 

different behaviours of IS and sustainable SCs. As such, some authors have advocated for a 

multi-method approach, in which several methods are combined together in order to 

overcome some of their limitations. Some of the most important multi-method approaches that 

can be found in the literature related to circular economy and IS are described next. 

DES-SD. The DES-SD hybrid approach is predominantly employed for studying sustainability 

challenges, though it has not yet been applied to issues of IS. Both DES and SD have been 

extensively utilized to analyse sustainability within the healthcare sector, as demonstrated in 

studies by Mielczarek (2019), Mielczarek and Zabawa (2016), and Landa et al. (2018). 

Additionally, some research has leveraged the DES-SD hybrid model to address specific 

supply chain and industrial sustainability concerns, including work by Doluweera et al. (2020), 

Oleghe (2019), and Fakhimi et al. (2015). In this multi-method approach, DES is used to model 

specific entities, employing state variables that change at discrete intervals. This method 

effectively captures stochastic elements such as uncertainty and unexpected disruptions, 

monitoring the evolution of entities in a top-down manner. On the other hand, SD offers a 

feedback perspective, illustrating the broader system impact of DES entities. It identifies the 

connections and delays between DES components through feedback loops, uncovering 

cause-and-effect relationships and investigating the system's dynamic and evolutionary 

behaviours, also in a top-down approach. 

ABM-SD. Several studies utilize the ABM-SD hybrid approach to focus on sustainability issues, 

including Sitepu et al. (2016) and Golroudbary et al. (2019). Romero and Ruiz (2014) also 

propose ABM-SD as a suitable method for addressing IS. In this combined approach, SD 

assumes homogeneity and leverages aggregation concepts. Stocks and flows are aligned with 

agents to store information critical for their learning processes and to understand their states. 

ABM captures the heterogeneity of individuals within an interconnected network by utilizing 

data stored in SD. This approach also employs the dynamic nature of feedback loops to 

manage agent behaviours over short and long-term periods. 

ABM-DES. The ABM-DES hybrid approach is mainly used for analysing sustainable supply 

chain issues, as shown in studies by Farsi et al. (2019), Mittal and Krejci (2019), and Rondini 
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et al. (2017). ABM provides a high degree of flexibility and autonomy encapsulation, effectively 

modelling and capturing the autonomous behaviours of DES entities. The events modelled 

with DES enable ABM to offer significant flexibility in representing various agent behaviours, 

cognition, and decision-making processes. DES, known for its superior runtime performance 

compared to ABM, monitors agent performances and creates specific entities and events that 

impact agents. 

ABM-DES-SD. A few studies integrate all three simulation methods—ABM, DES, and SD—to 

provide a comprehensive analysis, including works by Gu and Kunc (2019), Elia et al. (2016), 

and Wang et al. (2014). ABM models complex adaptive systems using self-organizing 

properties, capturing emergent and learning behaviours. DES simulates distinct agent 

behaviours by modelling sequences of events at specific times, considering resources, 

capacities, and interaction rules. SD examines the behavioural patterns and interactions within 

the network, utilizing aggregate variables to provide a holistic view of the system.  

The review highlights the strengths and limitations of each method, advocating for hybrid 

approaches to address their shortcomings. For instance, the DES-SD hybrid combines 

Discrete Event Simulation (DES) with System Dynamics (SD) to capture both specific events 

and broader system feedbacks. DES is particularly effective at modelling specific entities and 

their stochastic behaviours, allowing for detailed examination of uncertainties and disruptions 

at discrete time intervals. On the other hand, SD offers a macroscopic perspective by focusing 

on feedback loops and the flow of resources over time. By combining these two methods, the 

DES-SD hybrid can provide a more holistic analysis of sustainability challenges, considering 

both micro-level events and macro-level system behaviours. Other hybrid approaches, such 

as ABM-SD and ABM-DES, also integrate multiple methodologies to leverage their respective 

strengths. The ABM-SD hybrid approach combines Agent-Based Modelling (ABM) with SD, 

effectively capturing the heterogeneity and interactions of individual agents while also 

considering the dynamic feedback mechanisms within the system. This approach is 

particularly useful for understanding how individual behaviours and decisions impact overall 

system dynamics over both short and long terms. Similarly, the ABM-DES hybrid approach 

merges the flexibility and autonomy encapsulation of ABM with the efficiency and performance 

of DES. ABM provides the ability to model complex adaptive behaviours of agents within a 

system, while DES offers superior runtime performance and detailed event-based analysis. 

This combination allows for a nuanced study of sustainable supply chains, where individual 

agent behaviours and their interactions can be examined in the context of larger system 

processes and constraints. By integrating these various methods, hybrid approaches provide 

a comprehensive toolset for studying sustainable supply chains and industrial symbiosis. They 

enable researchers to address the limitations of individual models, such as the extensive data 

requirements of ABM or the aggregation issues in IOM, and to create more robust and 

accurate simulations of real-world systems. This multi-method strategy enhances the ability to 

develop effective strategies and policies for sustainability 
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5 SELECTION OF MODELLING METHODOLOGIES  

In the previous sections we have reviewed the main modelling methodologies for the analysis 

of supply chain dynamics and circular economy. We conclude that no single methodology 

seems to be able to fulfil all the requirements posed in section 3.4. Therefore, a combination 

of different methodologies (also known as a multi-method or hybrid approach) will be required. 

Demartini et al. (2022) also advocates for a multi-method for modelling IS. More specifically, 

in view of the requisites, it seems that a combination of analytical models (at the 

design/allocation level) and simulation (at an operation level) could fulfil the requisites posed.  

Analytical models are top-down approaches that can be treated using optimization techniques, 

which are necessary to optimize the structure and functionality of the four scenarios that 

will be analysed in this project. On the other hand, simulation has been widely used in SC 

evaluations (Corsini et al., 2023), and it can support managers in the decision-making process 

because it can help them understand complexities, dynamics and interactions that 

characterize SCs (Oliveira et al., 2016). Simulation allows for an accurate replication of the 

dynamic aspects of the SC. In addition, simulation can easily accommodate heterogeneous 

entities with complex, non-linear relationships among them, making possible the development 

of the complex models that are required to capture the behaviour of ISNs. Also, current 

computer technology coped with the high efficiency of most simulation platforms make 

possible to run complex multi-range simulations (i.e., short-term and long-term) in a very short 

time. Within simulation techniques, researchers have extensively used ABM, due to the link 

between agents and SC members (Cannella et al., 2018). ABM refers to a category of 

computational models invoking the dynamic actions, reactions, and intercommunication 

protocols among the agents in a sharing environment to evaluate their performance (Abar et 

al., 2017). This is a bottom-up approach that allows to model the individual behaviour of the 

(physical and logical) elements in the SC and describe their interactions. This has several 

advantages for SC simulation, such as the possibility to develop and implement simulation 

models with multiple layers and achieve a resilient and flexible system (Abar et al., 2017). 

These features permit modelling at multiple granularity levels, from individual elements 

(such as personal or material) to higher level functionalities (such as departments or an entire 

company). In addition, each agent or element of the model can be combined with other agents 

to form a higher-level agent, allowing for nested structures and a high re-usability of each 

agent, model or sub-model developed. Therefore, ABM shows a high flexibility, and can be 

used to model the quite different SC structures, behaviours, and policies derived from the 

scenarios with less effort than other simulation techniques (such as SD, or DES) in which the 

elements and their behaviour are usually ‘hardwired’. However, SD and DES models can be 

embedded within an agent (ABM-SD-DES approach, see section 4.2), enhancing the 

complexity of agent’s behaviours and permitting a combination of bottom-up and top-down 

approaches. Finally, ABM is fully consistent with SC realities (Long and Zhang, 2014), and 

represents one of the most appropriate methodologies to analyse the complex dynamics that 

characterize an industrial system adopting CE practices (Romero and Ruiz, 2014; Demartini 

et al., 2022), as it is demonstrated by recent publications in the field of IS (Fraccascia, 2019; 
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Yazan & Fraccascia, 2020) as well as in the field of CLSCs (Díaz Fernández et al., 2012; 

Dominguez et al., 2021; Ponte et al., 2017; Naghavi et al., 2020). 

5.2 SELECTION OF MODELLING TOOLS  

Simulation models are developed using computer tools, which often consist in a set of libraries 

with pre-programmed functionalities. These tools may come with additional features such a 

user interface, visualization environment (to visualize the behaviour of the model in real time) 

or auxiliary elements for data analysis. Following the discussion of the previous section, in this 

section we describe some of the most important ABM tools and provide a categorization of 

such tools according to a set of key features to identify the most suitable one for the 

development of the SC models that are required by this project. In the following we provide a 

brief description of each tool: 

Netlogo: NetLogo is a versatile and user-friendly programming environment designed for 

simulating natural and social phenomena, particularly suited for agent-based modelling. 

Developed by Uri Wilensky in 1999 at Northwestern University, it allows users to create and 

manipulate models where individual agents operate based on defined rules, leading to 

complex, emergent behaviours. With a rich library of pre-built models, an intuitive graphical 

interface, and robust visualization tools, NetLogo is accessible to users at all skill levels. It is 

widely used in education and research for exploring complex systems in fields such as ecology, 

economics, social sciences, and beyond. 

Repast: Repast (Recursive Porous Agent Simulation Toolkit) is a sophisticated and flexible 

platform for creating, running, and analysing agent-based simulations. Initially developed by 

the University of Chicago's Social Science Research Computing group, Repast is designed to 

facilitate complex modelling and simulations of agent interactions within dynamic 

environments. It offers a range of libraries and tools that support large-scale simulations, high-

performance computing, and integration with other software. Repast is widely used in research 

across various disciplines, including social science, economics, biology, and environmental 

science, enabling researchers to model and study intricate systems and phenomena. Its 

modular architecture and support for multiple programming languages, including Java, Python, 

and C#, make it a powerful tool for developing detailed and scalable simulations. 

Anylogic: AnyLogic is a powerful and versatile simulation software designed for modelling 

complex systems and processes. Developed by The AnyLogic Company, it supports multiple 

simulation methodologies, including discrete event simulation (DES), agent-based modelling 

(ABM), and system dynamics (SD), making it unique in its ability to model diverse types of 

systems within a single platform. AnyLogic is widely used across various industries, such as 

logistics, manufacturing, healthcare, and transportation, for tasks like optimizing operations, 

analysing SCs, and predicting system behaviour under different scenarios. Its user-friendly 

interface, extensive libraries, and integration capabilities with other tools and databases 

provide a comprehensive environment for developing, running, and analysing simulations, 

helping organizations make informed decisions and improve efficiency. 

MASON: MASON (Multi-Agent Simulation Of Neighborhoods) is a high-performance, discrete-

event multi-agent simulation library developed in Java by George Mason University's 
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Evolutionary Computation Laboratory and the Center for Social Complexity. Designed for 

creating and running large-scale, computationally intensive simulations, MASON provides a 

flexible and efficient framework for developing complex models of interacting agents. It is 

particularly well-suited for research applications in fields such as social science, economics, 

and artificial intelligence, where understanding the behaviour of decentralized systems is 

crucial. MASON's architecture is highly modular, allowing for the easy integration of custom 

visualization and analysis tools, and its ability to handle extensive simulations makes it a 

valuable tool for researchers and developers seeking to explore and analyse intricate system 

dynamics. 

GAMA: GAMA (GIS Agent-based Modelling Architecture) is a robust and extensible simulation 

platform designed for building spatially explicit agent-based models. Developed by the GAMA 

development team, it is tailored for researchers and practitioners who need to model complex 

systems where geographic information systems (GIS) play a crucial role. GAMA supports the 

creation of large-scale simulations with detailed environmental data, allowing agents to 

interact with rich spatial environments. It features a user-friendly interface, powerful 

visualization tools, and a flexible scripting language that enables the development of 

sophisticated models. GAMA is widely used in fields such as urban planning, ecology, disaster 

management, and socio-economic studies, providing valuable insights into spatial dynamics 

and helping to inform decision-making processes. Its ability to integrate with various data 

sources and simulation frameworks makes it a versatile tool for analysing and understanding 

complex spatial phenomena. 

Python (Mesa and PyABM): Python is a versatile and widely used programming language, 

and several libraries and frameworks support agent-based modelling. Mesa and PyABM are 

examples of Python-based libraries that facilitate the development of agent-based models.  

• Mesa is an open-source Python library designed for building and visualizing agent-

based models. Developed with a focus on simplicity and ease of use, Mesa enables 

researchers, educators, and developers to create complex simulations with minimal 

coding effort. The library provides a flexible and modular framework, supporting the 

rapid development and analysis of models where individual agents interact within a 

defined environment. Mesa includes built-in tools for visualization, data collection, and 

analysis, making it easy to monitor and interpret the behaviour of agents over time. Its 

integration with the Python ecosystem allows users to leverage a wide range of 

libraries and tools for further data processing and visualization. Mesa is widely used in 

academic research, education, and industry for modelling social systems, economic 

processes, ecological dynamics, and more, making it a valuable resource for 

understanding and exploring agent-based systems. 

• PyABM (Python Agent-Based Modelling) is an open-source library designed to 

facilitate the development and analysis of agent-based models using the Python 

programming language. PyABM aims to provide a straightforward and flexible 

framework for researchers, educators, and developers to create simulations where 

individual agents operate based on specified rules and interact within a defined 

environment. The library supports the construction of complex models with minimal 

overhead, making it accessible to users with varying levels of programming expertise. 
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PyABM integrates seamlessly with Python's extensive ecosystem of scientific and data 

analysis tools, enabling users to perform in-depth analysis and visualization of their 

simulations. It is particularly useful for studying dynamic systems in fields such as 

social science, economics, ecology, and epidemiology, offering a powerful toolset for 

exploring and understanding the emergent behaviours of agent-based systems. 

 

AgentScript: AgentScript is a lightweight, open-source library designed for building agent-

based models in JavaScript. Tailored for web-based simulations, AgentScript allows users to 

create and run models directly in the browser, making it highly accessible and easy to share. 

The library supports the creation of individual agents that follow specified rules and interact 

within their environment, facilitating the exploration of complex system behaviours. With its 

intuitive syntax and seamless integration with web technologies, AgentScript is ideal for 

educators, researchers, and developers who want to visualize and analyse agent-based 

models online. It is particularly useful for interactive demonstrations, educational tools, and 

research applications that benefit from the accessibility and immediacy of web-based 

deployment. By leveraging JavaScript, AgentScript takes advantage of modern web 

development capabilities, providing a versatile platform for dynamic and interactive 

simulations. 

JADE: JADE (Java Agent Development Framework) is a comprehensive software framework 

for developing multi-agent systems in Java. Designed to simplify the creation of distributed 

and collaborative applications, JADE provides a set of tools and libraries that facilitate the 

implementation of intelligent agents and the coordination of their interactions. The framework 

offers a rich set of features, including agent communication, message passing, and agent 

lifecycle management, enabling developers to build complex systems where agents can 

autonomously interact with each other and their environment. JADE supports various 

communication protocols and standards, making it suitable for building interoperable and 

scalable multi-agent systems. Its modular architecture and extensive documentation make it 

a popular choice among researchers, developers, and organizations seeking to leverage 

agent-based technology for solving complex real-world problems. JADE's versatility and 

robustness make it a valuable tool for building intelligent systems in domains such as 

automation, logistics, telecommunications, and more. 

SCOPE: SCOPE is software tool for complex SC modelling. This tool was implemented using 

the Swarm libraries, specifically designed to build MAS-based models. The scalability of MAS 

modelling allows SCOPE to create a wide range of SC configurations with any number of 

companies distributed in any configuration along the SC. Agents can be customized to model 

a wide range of operational policies and behaviours and represent the different nodes of the 

SC. Thus, every node in the model can be set up with different policies and parameter values 

for the different business functions. The schedules (a key feature of Swarm) implement the 

sequence of actions that each agent perform during the simulation. 

In order to select the most appropriate ABM tool, according to the requirements of the present 

project, we have defined a set of key features, which are summarized next: 
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• User Interface: A user interface generally makes easier the development, treatment, 

and analysis of simulation models 

 

• Programming Language: Describes the programming language of the tool. 

 

• Multimethod: The platform allows the creation of simulation models combining ABM 

with other suitable techniques, such as DES or SD. This is an important feature to 

consider, since it has several important advantages as discussed in previous sections. 

 

• Visualization tools: The ABM tool integrates visualization tools or libraries that allow 

the visualization of the results in real time, as well as the visualization of the behaviour 

of the model (2D or 3D). This feature makes the interpretation of the results and the 

debugging of the model easier for the users, and it helps to the presentation of the 

results to other member of the project. 

 

• Support: Refers to the current support from the developers and the community in 

terms of updates, forums, material, etc. 

 

• License: Refers to the type of licence/s available (Open Source, PLE, Professional, 

etc.). 

 

• Team experience: Refers to the previous experience of the team working with the tool. 

 

• Publications: Number of scientific articles written in English published in journals 

within the topic of “supply chains”. 

 

• Other features: Describes other important features of each tool that may help to make 

a decision. 

 

The table below provides a categorization of each ABM tool according to these features. 

Based on the provided table, AnyLogic stands out as the best software for ABM for several 

reasons: 

1. Multimethod Simulation: AnyLogic supports multiple modelling methods, including DES, 

SD, and ABM. This flexibility allows modellers to combine different methods to suit their 

specific needs, providing a more comprehensive modelling approach compared to other 

tools that may focus on only one or two methods. 

 

2. Visualization Tools: AnyLogic offers advanced visualization tools, which are crucial for 

developing, analysing, and presenting models. High-quality visualization helps in 

understanding complex agent interactions and system behaviours, making it easier to 

communicate findings to stakeholders. 

 

3. Support: The level of support for AnyLogic is rated as high, which is essential for 

troubleshooting, learning, and optimizing models. Good support can significantly reduce 
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the time needed to develop and refine models, ensuring users can effectively utilize the 

software's capabilities. 

 

4. Licensing Options: AnyLogic offers various licensing options, including a free Personal 

Learning Edition (PLE), as well as university and professional licenses. This range of 

options makes it accessible for different user groups, from students and educators to 

professional modellers. 

 

5. Team Experience: The team experience with AnyLogic is rated as high, indicating that 

that the team has been substantially working with the software, including some published 

works in high quality journals.  

 

6. Publications: With 39 publications, AnyLogic has a significant presence in academic and 

professional research. This high number of publications suggests that AnyLogic is a 

trusted and widely used tool in the field of simulation and modelling, contributing to its 

credibility and validation by the research community. 

 

7. Additional Features: AnyLogic offers a range of additional features that enhance its utility, 

such as experimentation and optimization tools, as well as integration and connectivity 

capabilities. These features enable users to conduct thorough experiments and optimize 

their models efficiently, while also integrating with other systems and tools. 

 

Comparatively, other software like NetLogo, Repast, MASON, and others have their own 

strengths but may lack in one or more areas where AnyLogic excels. For example, NetLogo 

is praised for its ease of use and integrated modelling environment, but it does not support 

multimethod simulation. Repast offers good multi-language support and integration with other 

tools but doesn't match AnyLogic's breadth of simulation methods and publication record. 

Finally, SCOPE is the only ABM tool rated as SC oriented, but it lacks of current support, user 

interface or visualization tools. 

Therefore, considering the comprehensive suite of features, high support level, flexible 

licensing, team experience, and substantial user and publication base, AnyLogic emerges as 

the most suitable software for the development of this project. 
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 Interf
ace 

Language Multimethod Vis. 
tools 

Support License Team 
experience 

No. 
of 
pubs. 

Other features 

NetLogo Yes Logo 
(Java-
based) 

No Yes High Open-source None 9 Ease of use 
Integrated Modelling Environment 
Spatial dynamics 

Repast Yes Java, 
Python, 
and C# 

Yes (SD) Yes High Open-source None 6 Designed for use on workstations and small computing 
clusters.  
Multi-Language Support.  
Easy Integration with Other Tools 

AnyLogic Yes Java Yes (DES, SD) Yes High Free (PLE) 
  
University  
  
Professional 

High 39 Good integration of 3 simulation methods 
Experimentation and optimization tools 
Integration and connectivity 

MASON No Java Yes (DES) Yes Medium Academic 
Free License 

None 4 Efficiency and performance 
Tools and Libraries (spatial, scheduling,) 
Support for GIS integration 

GAMA Yes  GAML No Yes Medium  Open-source None 2 Ease of use 
Spatial dynamics, integrating geographic information systems 
(GIS) 
Tools for experimentation and analysis 

Python 
(Mesa, 
PyABM) 

 No Python No Yes High  Open-source Low 1 Ease of use 
Batch processing and data collection 
Extensibility 

AgentScript  No  JavaScript No  Yes High Open-source None 0 Ease of use 
Web-Based Modelling 
Lightweight and Fast 

JADE  Yes  JADE  No Yes High Free (limited)  
  
Commercial 

None 18 Robust infrastructure for agent communication (FIPA 
compliance) 
Scalability and extensibility 
Interoperability 

SCOPE No Java No No Low Owned High 12 Supply Chain oriented 
Conceived for modelling complex structures 
Includes traditional and circular policies 

Table 11. Summary of tools
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6 CONCEPTUAL MODELLING FRAMEWORK   

Considering all that has been discussed the previous Sections, here a conceptual modelling 

framework for a generic node in a Circular Supply Chain is proposed.  

Noting that the CSC definition provided by Batista et al. (2018) "the coordinated forward and 

reverse supply chains via purposeful business ecosystem integration for value creation from 

products/services, by-products and useful waste flows" a SC node i belonging to a CSC, in 

addition to the forward input and output material flows there are new flows of different nature. 

They can be Reverse flows, when they involve EOL products, i.e. Closed-loops or Open-loops, 

and they can be Symbiotic flows, when they involve waste/by-products generated in 

production processes. In the former case, closed-loops interest the same SC, while open-

loops involve different SC. In the latter, also the flows can be inter-SC and intra-SC. 

Specifically, if inter-SC all SC nodes of different SCs that belong to the same CSC can provide 

the symbiotic flow for a specific node, if intra-SC, all the SC nodes of the same SC except for 

the direct downstream node, as it is its customer for the main product.   

According to these definitions, it follows that in a CSC composed of K SCs where each k SC 

is composed of Nk nodes, the ik-th node can have ∑ 𝑁𝑘
𝐾
𝑘=1 − 2 possible outgoing symbiotic 

flows, ∑ 𝑁𝑘
𝐾
𝑘=1 − 1  possible incoming symbiotic flows, K -1 possible incoming open-loop 

reverse flows, 1 possible incoming closed-loop reverse flow.  

 

Figure 2. Circular Supply Chain Node 

The generic node abstraction allows the model to be applicable across different CSC 

archetype since each node can be viewed as a modular component that can be easily 

integrated into a more complex CSS. Thus, this modularity supports the construction of 

complex CSC by combining multiple nodes with defined interfaces as it can be also adjusted 

to reflect different processes, resources, and interactions specific to each SC node. As well 

as the four different scenarios above mentioned. 
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